30 resultados para Stone, John Osgood, 1813-1873.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

http://www.archive.org/details/johnludwigkrapfe00kretiala

Relevância:

20.00% 20.00%

Publicador:

Resumo:

http://www.archive.org/details/historyofcatholi00sheaiala

Relevância:

20.00% 20.00%

Publicador:

Resumo:

http://www.archive.org/details/jamesevans00maclrich

Relevância:

20.00% 20.00%

Publicador:

Resumo:

http://www.archive.org/details/womeninthemissio00telfuoft

Relevância:

20.00% 20.00%

Publicador:

Resumo:

http://www.archive.org/details/johnwesleytheman00pikeuoft

Relevância:

20.00% 20.00%

Publicador:

Resumo:

http://digilib.bu.edu/archive/strangerthanfict00halcrich/strangerthanfict00halcrich.djvu

Relevância:

20.00% 20.00%

Publicador:

Resumo:

http://www.archive.org/details/bibleillustratio00ingluoft

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Throughout the history of the Church, the Epistle to the Hebrews has been one of the most puzzling letters in the Canon, particularly regarding the implications of understanding the person of Jesus Christ. John Chrysostom, an important patristic writer, is acknowledged to have made significant contributions to the exegesis of this letter. Chrysostom's thought became the norm for traditional thinking and interpretation of this letter in the Middle Ages. Martin Luther's reception of Chrysostom's Homilies on Hebrews presents a unique interpretation that some scholars may describe as the "Reformation Discovery" on Hebrews. In tracing Luther's reception and appropriation of Chrysostom's exegesis of the letter to the Hebrews, there is a noticeable and significant shift in Christological interpretation. Whether or not these modifications were necessary is a matter of debate; however, they do reflect Luther's contextual and existential questions regarding faith, Christ and knowledge of God, which is evident in his Lectures on Hebrews.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shock wave lithotripsy is the preferred treatment modality for kidney stones in the United States. Despite clinical use for over twenty-five years, the mechanisms of stone fragmentation are still under debate. A piezoelectric array was employed to examine the effect of waveform shape and pressure distribution on stone fragmentation in lithotripsy. The array consisted of 170 elements placed on the inner surface of a 15 cm-radius spherical cap. Each element was driven independently using a 170 individual pulsers, each capable of generating 1.2 kV. The acoustic field was characterized using a fiber optic probe hydrophone with a bandwidth of 30 MHz and a spatial resolution of 100 μm. When all elements were driven simultaneously, the focal waveform was a shock wave with peak pressures p+ =65±3MPa and p−=−16±2MPa and the −6 dB focal region was 13 mm long and 2 mm wide. The delay for each element was the only control parameter for customizing the acoustic field and waveform shape, which was done with the aim of investigating the hypothesized mechanisms of stone fragmentation such as spallation, shear, squeezing, and cavitation. The acoustic field customization was achieved by employing the angular spectrum approach for modeling the forward wave propagation and regression of least square errors to determine the optimal set of delays. Results from the acoustic field customization routine and its implications on stone fragmentation will be discussed.