17 resultados para Lambda calculus
Resumo:
A weak reference is a reference to an object that is not followed by the pointer tracer when garbage collection is called. That is, a weak reference cannot prevent the object it references from being garbage collected. Weak references remain a troublesome programming feature largely because there is not an accepted, precise semantics that describes their behavior (in fact, we are not aware of any formalization of their semantics). The trouble is that weak references allow reachable objects to be garbage collected, therefore allowing garbage collection to influence the result of a program. Despite this difficulty, weak references continue to be used in practice for reasons related to efficient storage management, and are included in many popular programming languages (Standard ML, Haskell, OCaml, and Java). We give a formal semantics for a calculus called λweak that includes weak references and is derived from Morrisett, Felleisen, and Harper’s λgc. λgc formalizes the notion of garbage collection by means of a rewrite rule. Such a formalization is required to precisely characterize the semantics of weak references. However, the inclusion of a garbage-collection rewrite-rule in a language with weak references introduces non-deterministic evaluation, even if the parameter-passing mechanism is deterministic (call-by-value in our case). This raises the question of confluence for our rewrite system. We discuss natural restrictions under which our rewrite system is confluent, thus guaranteeing uniqueness of program result. We define conditions that allow other garbage collection algorithms to co-exist with our semantics of weak references. We also introduce a polymorphic type system to prove the absence of erroneous program behavior (i.e., the absence of “stuck evaluation”) and a corresponding type inference algorithm. We prove the type system sound and the inference algorithm sound and complete.
Resumo:
Weak references provide the programmer with limited control over the process of memory management. By using them, a programmer can make decisions based on previous actions that are taken by the garbage collector. Although this is often helpful, the outcome of a program using weak references is less predictable due to the nondeterminism they introduce in program evaluation. It is therefore desirable to have a framework of formal tools to reason about weak references and programs that use them. We present several calculi that formalize various aspects of weak references, inspired by their implementation in Java. We provide a calculus to model multiple levels of non-strong references, where a different garbage collection policy is applied to each level. We consider different collection policies such as eager collection and lazy collection. Similar to the way they are implemented in Java, we give the semantics of eager collection to weak references and the semantics of lazy collection to soft references. Moreover, we condition garbage collection on the availability of time and space resources. While time constraints are used in order to restrict garbage collection, space constraints are used in order to trigger it. Finalizers are a problematic feature in Java, especially when they interact with weak references. We provide a calculus to model finalizer evaluation. Since finalizers have little meaning in a language without side-effect, we introduce a limited form of side effect into the calculus. We discuss determinism and the separate notion of uniqueness of (evaluation) outcome. We show that in our calculus, finalizer evaluation does not affect uniqueness of outcome.