17 resultados para Formal specification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

When analysing the behavior of complex networked systems, it is often the case that some components within that network are only known to the extent that they belong to one of a set of possible "implementations" – e.g., versions of a specific protocol, class of schedulers, etc. In this report we augment the specification language considered in BUCSTR-2004-021, BUCS-TR-2005-014, BUCS-TR-2005-015, and BUCS-TR-2005-033, to include a non-deterministic multiple-choice let-binding, which allows us to consider compositions of networking subsystems that allow for looser component specifications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the framework of iBench research project, our previous work created a domain specific language TRAFFIC [6] that facilitates specification, programming, and maintenance of distributed applications over a network. It allows safety property to be formalized in terms of types and subtyping relations. Extending upon our previous work, we add Hindley-Milner style polymorphism [8] with constraints [9] to the type system of TRAFFIC. This allows a programmer to use for-all quantifier to describe types of network components, escalating power and expressiveness of types to a new level that was not possible before with propositional subtyping relations. Furthermore, we design our type system with a pluggable constraint system, so it can adapt to different application needs while maintaining soundness. In this paper, we show the soundness of the type system, which is not syntax-directed but is easier to do typing derivation. We show that there is an equivalent syntax-directed type system, which is what a type checker program would implement to verify the safety of a network flow. This is followed by discussion on several constraint systems: polymorphism with subtyping constraints, Linear Programming, and Constraint Handling Rules (CHR) [3]. Finally, we provide some examples to illustrate workings of these constraint systems.