352 resultados para National Science Foundation (U.S.). Directorate for Geosciences.
Resumo:
A common problem in many types of databases is retrieving the most similar matches to a query object. Finding those matches in a large database can be too slow to be practical, especially in domains where objects are compared using computationally expensive similarity (or distance) measures. This paper proposes a novel method for approximate nearest neighbor retrieval in such spaces. Our method is embedding-based, meaning that it constructs a function that maps objects into a real vector space. The mapping preserves a large amount of the proximity structure of the original space, and it can be used to rapidly obtain a short list of likely matches to the query. The main novelty of our method is that it constructs, together with the embedding, a query-sensitive distance measure that should be used when measuring distances in the vector space. The term "query-sensitive" means that the distance measure changes depending on the current query object. We report experiments with an image database of handwritten digits, and a time-series database. In both cases, the proposed method outperforms existing state-of-the-art embedding methods, meaning that it provides significantly better trade-offs between efficiency and retrieval accuracy.
Resumo:
A human-computer interface (HCI) system designed for use by people with severe disabilities is presented. People that are severely paralyzed or afflicted with diseases such as ALS (Lou Gehrig's disease) or multiple sclerosis are unable to move or control any parts of their bodies except for their eyes. The system presented here detects the user's eye blinks and analyzes the pattern and duration of the blinks, using them to provide input to the computer in the form of a mouse click. After the automatic initialization of the system occurs from the processing of the user's involuntary eye blinks in the first few seconds of use, the eye is tracked in real time using correlation with an online template. If the user's depth changes significantly or rapid head movement occurs, the system is automatically reinitialized. There are no lighting requirements nor offline templates needed for the proper functioning of the system. The system works with inexpensive USB cameras and runs at a frame rate of 30 frames per second. Extensive experiments were conducted to determine both the system's accuracy in classifying voluntary and involuntary blinks, as well as the system's fitness in varying environment conditions, such as alternative camera placements and different lighting conditions. These experiments on eight test subjects yielded an overall detection accuracy of 95.3%.
Resumo:
The heterogeneity and open nature of network systems make analysis of compositions of components quite challenging, making the design and implementation of robust network services largely inaccessible to the average programmer. We propose the development of a novel type system and practical type spaces which reflect simplified representations of the results and conclusions which can be derived from complex compositional theories in more accessible ways, essentially allowing the system architect or programmer to be exposed only to the inputs and output of compositional analysis without having to be familiar with the ins and outs of its internals. Toward this end we present the TRAFFIC (Typed Representation and Analysis of Flows For Interoperability Checks) framework, a simple flow-composition and typing language with corresponding type system. We then discuss and demonstrate the expressive power of a type space for TRAFFIC derived from the network calculus, allowing us to reason about and infer such properties as data arrival, transit, and loss rates in large composite network applications.
Resumo:
This paper formally defines the operational semantic for TRAFFIC, a specification language for flow composition applications proposed in BUCS-TR-2005-014, and presents a type system based on desired safety assurance. We provide proofs on reduction (weak-confluence, strong-normalization and unique normal form), on soundness and completeness of type system with respect to reduction, and on equivalence classes of flow specifications. Finally, we provide a pseudo-code listing of a syntax-directed type checking algorithm implementing rules of the type system capable of inferring the type of a closed flow specification.
Resumo:
Nearest neighbor classifiers are simple to implement, yet they can model complex non-parametric distributions, and provide state-of-the-art recognition accuracy in OCR databases. At the same time, they may be too slow for practical character recognition, especially when they rely on similarity measures that require computationally expensive pairwise alignments between characters. This paper proposes an efficient method for computing an approximate similarity score between two characters based on their exact alignment to a small number of prototypes. The proposed method is applied to both online and offline character recognition, where similarity is based on widely used and computationally expensive alignment methods, i.e., Dynamic Time Warping and the Hungarian method respectively. In both cases significant recognition speedup is obtained at the expense of only a minor increase in recognition error.
Resumo:
Gesture spotting is the challenging task of locating the start and end frames of the video stream that correspond to a gesture of interest, while at the same time rejecting non-gesture motion patterns. This paper proposes a new gesture spotting and recognition algorithm that is based on the continuous dynamic programming (CDP) algorithm, and runs in real-time. To make gesture spotting efficient a pruning method is proposed that allows the system to evaluate a relatively small number of hypotheses compared to CDP. Pruning is implemented by a set of model-dependent classifiers, that are learned from training examples. To make gesture spotting more accurate a subgesture reasoning process is proposed that models the fact that some gesture models can falsely match parts of other longer gestures. In our experiments, the proposed method with pruning and subgesture modeling is an order of magnitude faster and 18% more accurate compared to the original CDP algorithm.
Resumo:
This paper proposes a method for detecting shapes of variable structure in images with clutter. The term "variable structure" means that some shape parts can be repeated an arbitrary number of times, some parts can be optional, and some parts can have several alternative appearances. The particular variation of the shape structure that occurs in a given image is not known a priori. Existing computer vision methods, including deformable model methods, were not designed to detect shapes of variable structure; they may only be used to detect shapes that can be decomposed into a fixed, a priori known, number of parts. The proposed method can handle both variations in shape structure and variations in the appearance of individual shape parts. A new class of shape models is introduced, called Hidden State Shape Models, that can naturally represent shapes of variable structure. A detection algorithm is described that finds instances of such shapes in images with large amounts of clutter by finding globally optimal correspondences between image features and shape models. Experiments with real images demonstrate that our method can localize plant branches that consist of an a priori unknown number of leaves and can detect hands more accurately than a hand detector based on the chamfer distance.
Resumo:
Nearest neighbor search is commonly employed in face recognition but it does not scale well to large dataset sizes. A strategy to combine rejection classifiers into a cascade for face identification is proposed in this paper. A rejection classifier for a pair of classes is defined to reject at least one of the classes with high confidence. These rejection classifiers are able to share discriminants in feature space and at the same time have high confidence in the rejection decision. In the face identification problem, it is possible that a pair of known individual faces are very dissimilar. It is very unlikely that both of them are close to an unknown face in the feature space. Hence, only one of them needs to be considered. Using a cascade structure of rejection classifiers, the scope of nearest neighbor search can be reduced significantly. Experiments on Face Recognition Grand Challenge (FRGC) version 1 data demonstrate that the proposed method achieves significant speed up and an accuracy comparable with the brute force Nearest Neighbor method. In addition, a graph cut based clustering technique is employed to demonstrate that the pairwise separability of these rejection classifiers is capable of semantic grouping.
Resumo:
Accurate head tilt detection has a large potential to aid people with disabilities in the use of human-computer interfaces and provide universal access to communication software. We show how it can be utilized to tab through links on a web page or control a video game with head motions. It may also be useful as a correction method for currently available video-based assistive technology that requires upright facial poses. Few of the existing computer vision methods that detect head rotations in and out of the image plane with reasonable accuracy can operate within the context of a real-time communication interface because the computational expense that they incur is too great. Our method uses a variety of metrics to obtain a robust head tilt estimate without incurring the computational cost of previous methods. Our system runs in real time on a computer with a 2.53 GHz processor, 256 MB of RAM and an inexpensive webcam, using only 55% of the processor cycles.
Resumo:
Facial features play an important role in expressing grammatical information in signed languages, including American Sign Language(ASL). Gestures such as raising or furrowing the eyebrows are key indicators of constructions such as yes-no questions. Periodic head movements (nods and shakes) are also an essential part of the expression of syntactic information, such as negation (associated with a side-to-side headshake). Therefore, identification of these facial gestures is essential to sign language recognition. One problem with detection of such grammatical indicators is occlusion recovery. If the signer's hand blocks his/her eyebrows during production of a sign, it becomes difficult to track the eyebrows. We have developed a system to detect such grammatical markers in ASL that recovers promptly from occlusion. Our system detects and tracks evolving templates of facial features, which are based on an anthropometric face model, and interprets the geometric relationships of these templates to identify grammatical markers. It was tested on a variety of ASL sentences signed by various Deaf native signers and detected facial gestures used to express grammatical information, such as raised and furrowed eyebrows as well as headshakes.
Resumo:
A learning based framework is proposed for estimating human body pose from a single image. Given a differentiable function that maps from pose space to image feature space, the goal is to invert the process: estimate the pose given only image features. The inversion is an ill-posed problem as the inverse mapping is a one to many process. Hence multiple solutions exist, and it is desirable to restrict the solution space to a smaller subset of feasible solutions. For example, not all human body poses are feasible due to anthropometric constraints. Since the space of feasible solutions may not admit a closed form description, the proposed framework seeks to exploit machine learning techniques to learn an approximation that is smoothly parameterized over such a space. One such technique is Gaussian Process Latent Variable Modelling. Scaled conjugate gradient is then used find the best matching pose in the space of feasible solutions when given an input image. The formulation allows easy incorporation of various constraints, e.g. temporal consistency and anthropometric constraints. The performance of the proposed approach is evaluated in the task of upper-body pose estimation from silhouettes and compared with the Specialized Mapping Architecture. The estimation accuracy of the Specialized Mapping Architecture is at least one standard deviation worse than the proposed approach in the experiments with synthetic data. In experiments with real video of humans performing gestures, the proposed approach produces qualitatively better estimation results.
Resumo:
Although cooperation generally increases the amount of resources available to a community of nodes, thus improving individual and collective performance, it also allows for the appearance of potential mistreatment problems through the exposition of one node’s resources to others. We study such concerns by considering a group of independent, rational, self-aware nodes that cooperate using on-line caching algorithms, where the exposed resource is the storage of each node. Motivated by content networking applications – including web caching, CDNs, and P2P – this paper extends our previous work on the off-line version of the problem, which was limited to object replication and was conducted under a game-theoretic framework. We identify and investigate two causes of mistreatment: (1) cache state interactions (due to the cooperative servicing of requests) and (2) the adoption of a common scheme for cache replacement/redirection/admission policies. Using analytic models, numerical solutions of these models, as well as simulation experiments, we show that online cooperation schemes using caching are fairly robust to mistreatment caused by state interactions. When this becomes possible, the interaction through the exchange of miss-streams has to be very intense, making it feasible for the mistreated nodes to detect and react to the exploitation. This robustness ceases to exist when nodes fetch and store objects in response to remote requests, i.e., when they operate as Level-2 caches (or proxies) for other nodes. Regarding mistreatment due to a common scheme, we show that this can easily take place when the “outlier” characteristics of some of the nodes get overlooked. This finding underscores the importance of allowing cooperative caching nodes the flexibility of choosing from a diverse set of schemes to fit the peculiarities of individual nodes. To that end, we outline an emulation-based framework for the development of mistreatment-resilient distributed selfish caching schemes.
Resumo:
The Border Gateway Protocol (BGP) is the current inter-domain routing protocol used to exchange reachability information between Autonomous Systems (ASes) in the Internet. BGP supports policy-based routing which allows each AS to independently adopt a set of local policies that specify which routes it accepts and advertises from/to other networks, as well as which route it prefers when more than one route becomes available. However, independently chosen local policies may cause global conflicts, which result in protocol divergence. In this paper, we propose a new algorithm, called Adaptive Policy Management Scheme (APMS), to resolve policy conflicts in a distributed manner. Akin to distributed feedback control systems, each AS independently classifies the state of the network as either conflict-free or potentially-conflicting by observing its local history only (namely, route flaps). Based on the degree of measured conflicts (policy conflict-avoidance vs. -control mode), each AS dynamically adjusts its own path preferences—increasing its preference for observably stable paths over flapping paths. APMS also includes a mechanism to distinguish route flaps due to topology changes, so as not to confuse them with those due to policy conflicts. A correctness and convergence analysis of APMS based on the substability property of chosen paths is presented. Implementation in the SSF network simulator is performed, and simulation results for different performance metrics are presented. The metrics capture the dynamic performance (in terms of instantaneous throughput, delay, routing load, etc.) of APMS and other competing solutions, thus exposing the often neglected aspects of performance.
Resumo:
The therapeutic effects of playing music are being recognized increasingly in the field of rehabilitation medicine. People with physical disabilities, however, often do not have the motor dexterity needed to play an instrument. We developed a camera-based human-computer interface called "Music Maker" to provide such people with a means to make music by performing therapeutic exercises. Music Maker uses computer vision techniques to convert the movements of a patient's body part, for example, a finger, hand, or foot, into musical and visual feedback using the open software platform EyesWeb. It can be adjusted to a patient's particular therapeutic needs and provides quantitative tools for monitoring the recovery process and assessing therapeutic outcomes. We tested the potential of Music Maker as a rehabilitation tool with six subjects who responded to or created music in various movement exercises. In these proof-of-concept experiments, Music Maker has performed reliably and shown its promise as a therapeutic device.
Resumo:
We present a type inference algorithm, in the style of compositional analysis, for the language TRAFFIC—a specification language for flow composition applications proposed in [2]—and prove that this algorithm is correct: the typings it infers are principal typings, and the typings agree with syntax-directed type checking on closed flow specifications. This algorithm is capable of verifying partial flow specifications, which is a significant improvement over syntax-directed type checking algorithm presented in [3]. We also show that this algorithm runs efficiently, i.e., in low-degree polynomial time.