17 resultados para scalable parallel programming


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The proliferation of inexpensive workstations and networks has prompted several researchers to use such distributed systems for parallel computing. Attempts have been made to offer a shared-memory programming model on such distributed memory computers. Most systems provide a shared-memory that is coherent in that all processes that use it agree on the order of all memory events. This dissertation explores the possibility of a significant improvement in the performance of some applications when they use non-coherent memory. First, a new formal model to describe existing non-coherent memories is developed. I use this model to prove that certain problems can be solved using asynchronous iterative algorithms on shared-memory in which the coherence constraints are substantially relaxed. In the course of the development of the model I discovered a new type of non-coherent behavior called Local Consistency. Second, a programming model, Mermera, is proposed. It provides programmers with a choice of hierarchically related non-coherent behaviors along with one coherent behavior. Thus, one can trade-off the ease of programming with coherent memory for improved performance with non-coherent memory. As an example, I present a program to solve a linear system of equations using an asynchronous iterative algorithm. This program uses all the behaviors offered by Mermera. Third, I describe the implementation of Mermera on a BBN Butterfly TC2000 and on a network of workstations. The performance of a version of the equation solving program that uses all the behaviors of Mermera is compared with that of a version that uses coherent behavior only. For a system of 1000 equations the former exhibits at least a 5-fold improvement in convergence time over the latter. The version using coherent behavior only does not benefit from employing more than one workstation to solve the problem while the program using non-coherent behavior continues to achieve improved performance as the number of workstations is increased from 1 to 6. This measurement corroborates our belief that non-coherent shared memory can be a performance boon for some applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Predictability -- the ability to foretell that an implementation will not violate a set of specified reliability and timeliness requirements -- is a crucial, highly desirable property of responsive embedded systems. This paper overviews a development methodology for responsive systems, which enhances predictability by eliminating potential hazards resulting from physically-unsound specifications. The backbone of our methodology is the Time-constrained Reactive Automaton (TRA) formalism, which adopts a fundamental notion of space and time that restricts expressiveness in a way that allows the specification of only reactive, spontaneous, and causal computation. Using the TRA model, unrealistic systems – possessing properties such as clairvoyance, caprice, infinite capacity, or perfect timing -- cannot even be specified. We argue that this "ounce of prevention" at the specification level is likely to spare a lot of time and energy in the development cycle of responsive systems -- not to mention the elimination of potential hazards that would have gone, otherwise, unnoticed. The TRA model is presented to system developers through the Cleopatra programming language. Cleopatra features a C-like imperative syntax for the description of computation, which makes it easier to incorporate in applications already using C. It is event-driven, and thus appropriate for embedded process control applications. It is object-oriented and compositional, thus advocating modularity and reusability. Cleopatra is semantically sound; its objects can be transformed, mechanically and unambiguously, into formal TRA automata for verification purposes, which can be pursued using model-checking or theorem proving techniques. Since 1989, an ancestor of Cleopatra has been in use as a specification and simulation language for embedded time-critical robotic processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Programmers of parallel processes that communicate through shared globally distributed data structures (DDS) face a difficult choice. Either they must explicitly program DDS management, by partitioning or replicating it over multiple distributed memory modules, or be content with a high latency coherent (sequentially consistent) memory abstraction that hides the DDS' distribution. We present Mermera, a new formalism and system that enable a smooth spectrum of noncoherent shared memory behaviors to coexist between the above two extremes. Our approach allows us to define known noncoherent memories in a new simple way, to identify new memory behaviors, and to characterize generic mixed-behavior computations. The latter are useful for programming using multiple behaviors that complement each others' advantages. On the practical side, we show that the large class of programs that use asynchronous iterative methods (AIM) can run correctly on slow memory, one of the weakest, and hence most efficient and fault-tolerant, noncoherence conditions. An example AIM program to solve linear equations, is developed to illustrate: (1) the need for concurrently mixing memory behaviors, and, (2) the performance gains attainable via noncoherence. Other program classes tolerate weak memory consistency by synchronizing in such a way as to yield executions indistinguishable from coherent ones. AIM computations on noncoherent memory yield noncoherent, yet correct, computations. We report performance data that exemplifies the potential benefits of noncoherence, in terms of raw memory performance, as well as application speed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coherent shared memory is a convenient, but inefficient, method of inter-process communication for parallel programs. By contrast, message passing can be less convenient, but more efficient. To get the benefits of both models, several non-coherent memory behaviors have recently been proposed in the literature. We present an implementation of Mermera, a shared memory system that supports both coherent and non-coherent behaviors in a manner that enables programmers to mix multiple behaviors in the same program[HS93]. A programmer can debug a Mermera program using coherent memory, and then improve its performance by selectively reducing the level of coherence in the parts that are critical to performance. Mermera permits a trade-off of coherence for performance. We analyze this trade-off through measurements of our implementation, and by an example that illustrates the style of programming needed to exploit non-coherence. We find that, even on a small network of workstations, the performance advantage of non-coherence is compelling. Raw non-coherent memory operations perform 20-40~times better than non-coherent memory operations. An example application program is shown to run 5-11~times faster when permitted to exploit non-coherence. We conclude by commenting on our use of the Isis Toolkit of multicast protocols in implementing Mermera.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For communication-intensive parallel applications, the maximum degree of concurrency achievable is limited by the communication throughput made available by the network. In previous work [HPS94], we showed experimentally that the performance of certain parallel applications running on a workstation network can be improved significantly if a congestion control protocol is used to enhance network performance. In this paper, we characterize and analyze the communication requirements of a large class of supercomputing applications that fall under the category of fixed-point problems, amenable to solution by parallel iterative methods. This results in a set of interface and architectural features sufficient for the efficient implementation of the applications over a large-scale distributed system. In particular, we propose a direct link between the application and network layer, supporting congestion control actions at both ends. This in turn enhances the system's responsiveness to network congestion, improving performance. Measurements are given showing the efficacy of our scheme to support large-scale parallel computations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current research on Internet-based distributed systems emphasizes the scalability of overlay topologies for efficient search and retrieval of data items, as well as routing amongst peers. However, most existing approaches fail to address the transport of data across these logical networks in accordance with quality of service (QoS) constraints. Consequently, this paper investigates the use of scalable overlay topologies for routing real-time media streams between publishers and potentially many thousands of subscribers. Specifically, we analyze the costs of using k-ary n-cubes for QoS-constrained routing. Given a number of nodes in a distributed system, we calculate the optimal k-ary n-cube structure for minimizing the average distance between any pair of nodes. Using this structure, we describe a greedy algorithm that selects paths between nodes in accordance with the real-time delays along physical links. We show this method improves the routing latencies by as much as 67%, compared to approaches that do not consider physical link costs. We are in the process of developing a method for adaptive node placement in the overlay topology, based upon the locations of publishers, subscribers, physical link costs and per-subscriber QoS constraints. One such method for repositioning nodes in logical space is discussed, to improve the likelihood of meeting service requirements on data routed between publishers and subscribers. Future work will evaluate the benefits of such techniques more thoroughly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inferring types for polymorphic recursive function definitions (abbreviated to polymorphic recursion) is a recurring topic on the mailing lists of popular typed programming languages. This is despite the fact that type inference for polymorphic recursion using for all-types has been proved undecidable. This report presents several programming examples involving polymorphic recursion and determines their typability under various type systems, including the Hindley-Milner system, an intersection-type system, and extensions of these two. The goal of this report is to show that many of these examples are typable using a system of intersection types as an alternative form of polymorphism. By accomplishing this, we hope to lay the foundation for future research into a decidable intersection-type inference algorithm. We do not provide a comprehensive survey of type systems appropriate for polymorphic recursion, with or without type annotations inserted in the source language. Rather, we focus on examples for which types may be inferred without type annotations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Science of Network Service Composition has clearly emerged as one of the grand themes driving many of our research questions in the networking field today [NeXtworking 2003]. This driving force stems from the rise of sophisticated applications and new networking paradigms. By "service composition" we mean that the performance and correctness properties local to the various constituent components of a service can be readily composed into global (end-to-end) properties without re-analyzing any of the constituent components in isolation, or as part of the whole composite service. The set of laws that would govern such composition is what will constitute that new science of composition. The combined heterogeneity and dynamic open nature of network systems makes composition quite challenging, and thus programming network services has been largely inaccessible to the average user. We identify (and outline) a research agenda in which we aim to develop a specification language that is expressive enough to describe different components of a network service, and that will include type hierarchies inspired by type systems in general programming languages that enable the safe composition of software components. We envision this new science of composition to be built upon several theories (e.g., control theory, game theory, network calculus, percolation theory, economics, queuing theory). In essence, different theories may provide different languages by which certain properties of system components can be expressed and composed into larger systems. We then seek to lift these lower-level specifications to a higher level by abstracting away details that are irrelevant for safe composition at the higher level, thus making theories scalable and useful to the average user. In this paper we focus on services built upon an overlay management architecture, and we use control theory and QoS theory as example theories from which we lift up compositional specifications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We leverage the buffering capabilities of end-systems to achieve scalable, asynchronous delivery of streams in a peer-to-peer environment. Unlike existing cache-and-relay schemes, we propose a distributed prefetching protocol where peers prefetch and store portions of the streaming media ahead of their playout time, thus not only turning themselves to possible sources for other peers but their prefetched data can allow them to overcome the departure of their source-peer. This stands in sharp contrast to existing cache-and-relay schemes where the departure of the source-peer forces its peer children to go the original server, thus disrupting their service and increasing server and network load. Through mathematical analysis and simulations, we show the effectiveness of maintaining such asynchronous multicasts from several source-peers to other children peers, and the efficacy of prefetching in the face of peer departures. We confirm the scalability of our dPAM protocol as it is shown to significantly reduce server load.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Communication and synchronization stand as the dual bottlenecks in the performance of parallel systems, and especially those that attempt to alleviate the programming burden by incurring overhead in these two domains. We formulate the notions of communicable memory and lazy barriers to help achieve efficient communication and synchronization. These concepts are developed in the context of BSPk, a toolkit library for programming networks of workstations|and other distributed memory architectures in general|based on the Bulk Synchronous Parallel (BSP) model. BSPk emphasizes efficiency in communication by minimizing local memory-to-memory copying, and in barrier synchronization by not forcing a process to wait unless it needs remote data. Both the message passing (MP) and distributed shared memory (DSM) programming styles are supported in BSPk. MP helps processes efficiently exchange short-lived unnamed data values, when the identity of either the sender or receiver is known to the other party. By contrast, DSM supports communication between processes that may be mutually anonymous, so long as they can agree on variable names in which to store shared temporary or long-lived data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a distributed indexing scheme for peer to peer networks. Past work on distributed indexing traded off fast search times with non-constant degree topologies or network-unfriendly behavior such as flooding. In contrast, the scheme we present optimizes all three of these performance measures. That is, we provide logarithmic round searches while maintaining connections to a fixed number of peers and avoiding network flooding. In comparison to the well known scheme Chord, we provide competitive constant factors. Finally, we observe that arbitrary linear speedups are possible and discuss both a general brute force approach and specific economical optimizations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To construct high performance Web servers, system builders are increasingly turning to distributed designs. An important challenge that arises in distributed Web servers is the need to direct incoming connections to individual hosts. Previous methods for connection routing have employed a centralized node which handles all incoming requests. In contrast, we propose a distributed approach, called Distributed Packet Rewriting (DPR), in which all hosts of the distributed system participate in connection routing. We argue that this approach promises better scalability and fault-tolerance than the centralized approach. We describe our implementation of four variants of DPR and compare their performance. We show that DPR provides performance comparable to centralized alternatives, measured in terms of throughput and delay under the SPECweb96 benchmark. Finally, we argue that DPR is particularly attractive both for small scale systems and for systems following the emerging trend toward increasingly intelligent I/O subsystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this project is the creation of a graphical "programming" interface for a sensor network tasking language called STEP. The graphical interface allows the user to specify a program execution graphically from an extensible pallet of functionalities and save the results as a properly formatted STEP file. Moreover, the software is able to load a file in STEP format and convert it into the corresponding graphical representation. During both phases a type-checker is running on the background to ensure that both the graphical representation and the STEP file are syntactically correct. This project has been motivated by the Sensorium project at Boston University. In this technical report we present the basic features of the software, the process that has been followed during the design and implementation. Finally, we describe the approach used to test and validate our software.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Overlay networks have become popular in recent times for content distribution and end-system multicasting of media streams. In the latter case, the motivation is based on the lack of widespread deployment of IP multicast and the ability to perform end-host processing. However, constructing routes between various end-hosts, so that data can be streamed from content publishers to many thousands of subscribers, each having their own QoS constraints, is still a challenging problem. First, any routes between end-hosts using trees built on top of overlay networks can increase stress on the underlying physical network, due to multiple instances of the same data traversing a given physical link. Second, because overlay routes between end-hosts may traverse physical network links more than once, they increase the end-to-end latency compared to IP-level routing. Third, algorithms for constructing efficient, large-scale trees that reduce link stress and latency are typically more complex. This paper therefore compares various methods to construct multicast trees between end-systems, that vary in terms of implementation costs and their ability to support per-subscriber QoS constraints. We describe several algorithms that make trade-offs between algorithmic complexity, physical link stress and latency. While no algorithm is best in all three cases we show how it is possible to efficiently build trees for several thousand subscribers with latencies within a factor of two of the optimal, and link stresses comparable to, or better than, existing technologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calligraphic writing presents a rich set of challenges to the human movement control system. These challenges include: initial learning, and recall from memory, of prescribed stroke sequences; critical timing of stroke onsets and durations; fine control of grip and contact forces; and letter-form invariance under voluntary size scaling, which entails fine control of stroke direction and amplitude during recruitment and derecruitment of musculoskeletal degrees of freedom. Experimental and computational studies in behavioral neuroscience have made rapid progress toward explaining the learning, planning and contTOl exercised in tasks that share features with calligraphic writing and drawing. This article summarizes computational neuroscience models and related neurobiological data that reveal critical operations spanning from parallel sequence representations to fine force control. Part one addresses stroke sequencing. It treats competitive queuing (CQ) models of sequence representation, performance, learning, and recall. Part two addresses letter size scaling and motor equivalence. It treats cursive handwriting models together with models in which sensory-motor tmnsformations are performed by circuits that learn inverse differential kinematic mappings. Part three addresses fine-grained control of timing and transient forces, by treating circuit models that learn to solve inverse dynamics problems.