19 resultados para 12930-018
Resumo:
Various restrictions on the terms allowed for substitution give rise to different cases of semi-unification. Semi-unification on finite and regular terms has already been considered in the literature. We introduce a general case of semi-unification where substitutions are allowed on non-regular terms, and we prove the equivalence of this general case to a well-known undecidable data base dependency problem, thus establishing the undecidability of general semi-unification. We present a unified way of looking at the various problems of semi-unification. We give some properties that are common to all the cases of semi-unification. We also the principality property and the solution set for those problems. We prove that semi-unification on general terms has the principality property. Finally, we present a recursive inseparability result between semi-unification on regular terms and semi-unification on general terms.
Resumo:
The algorithm presented in this paper aims to segment the foreground objects in video (e.g., people) given time-varying, textured backgrounds. Examples of time-varying backgrounds include waves on water, clouds moving, trees waving in the wind, automobile traffic, moving crowds, escalators, etc. We have developed a novel foreground-background segmentation algorithm that explicitly accounts for the non-stationary nature and clutter-like appearance of many dynamic textures. The dynamic texture is modeled by an Autoregressive Moving Average Model (ARMA). A robust Kalman filter algorithm iteratively estimates the intrinsic appearance of the dynamic texture, as well as the regions of the foreground objects. Preliminary experiments with this method have demonstrated promising results.
Resumo:
Consider a network of processors (sites) in which each site x has a finite set N(x) of neighbors. There is a transition function f that for each site x computes the next state ξ(x) from the states in N(x). But these transitions (updates) are applied in arbitrary order, one or many at a time. If the state of site x at time t is η(x; t) then let us define the sequence ζ(x; 0); ζ(x; 1), ... by taking the sequence η(x; 0),η(x; 1), ... , and deleting each repetition, i.e. each element equal to the preceding one. The function f is said to have invariant histories if the sequence ζ(x; i), (while it lasts, in case it is finite) depends only on the initial configuration, not on the order of updates. This paper shows that though the invariant history property is typically undecidable, there is a useful simple sufficient condition, called commutativity: For any configuration, for any pair x; y of neighbors, if the updating would change both ξ(x) and ξ(y) then the result of updating first x and then y is the same as the result of doing this in the reverse order. This fact is derivable from known results on the confluence of term-rewriting systems but the self-contained proof given here may be justifiable.
Resumo:
This paper addresses the problem of analyzing performance of WWW servers. The web has experienced a phenomenal growth and has become the most popular Internet application. As a consequence of its large popularity, the Internet has suffered from various performance problems, such as network congestion and overloaded servers. These days, it is not uncommon to find servers refusing connections because they are overloaded. Performance has always been a key issue in the design and operation of on-line systems. With regard to Internet, performance is also critical, because users want fast and easy access to all objects (i.e., documents, pictures, audio, and video) available on the net. Thus, it is important to understand WWW performance issues. This paper focuses on the performance analysis of a Web server. Using a synthetic benchmark (WebStone), we analyze three different Web server software running on top of a Windows NT platform and performing some typical WWW tasks.
Resumo:
We consider the problem of task assignment in a distributed system (such as a distributed Web server) in which task sizes are drawn from a heavy-tailed distribution. Many task assignment algorithms are based on the heuristic that balancing the load at the server hosts will result in optimal performance. We show this conventional wisdom is less true when the task size distribution is heavy-tailed (as is the case for Web file sizes). We introduce a new task assignment policy, called Size Interval Task Assignment with Variable Load (SITA-V). SITA-V purposely operates the server hosts at different loads, and directs smaller tasks to the lighter-loaded hosts. The result is that SITA-V provably decreases the mean task slowdown by significant factors (up to 1000 or more) where the more heavy-tailed the workload, the greater the improvement factor. We evaluate the tradeoff between improvement in slowdown and increase in waiting time in a system using SITA-V, and show conditions under which SITA-V represents a particularly appealing policy. We conclude with a discussion of the use of SITA-V in a distributed Web server, and show that it is attractive because it has a simple implementation which requires no communication from the server hosts back to the task router.
Resumo:
Existing approaches for multirate multicast congestion control are either friendly to TCP only over large time scales or introduce unfortunate side effects, such as significant control traffic, wasted bandwidth, or the need for modifications to existing routers. We advocate a layered multicast approach in which steady-state receiver reception rates emulate the classical TCP sawtooth derived from additive-increase, multiplicative decrease (AIMD) principles. Our approach introduces the concept of dynamic stair layers to simulate various rates of additive increase for receivers with heterogeneous round-trip times (RTTs), facilitated by a minimal amount of IGMP control traffic. We employ a mix of cumulative and non-cumulative layering to minimize the amount of excess bandwidth consumed by receivers operating asynchronously behind a shared bottleneck. We integrate these techniques together into a congestion control scheme called STAIR which is amenable to those multicast applications which can make effective use of arbitrary and time-varying subscription levels.
Resumo:
The objective of unicast routing is to find a path from a source to a destination. Conventional routing has been used mainly to provide connectivity. It lacks the ability to provide any kind of service guarantees and smart usage of network resources. Improving performance is possible by being aware of both traffic characteristics and current available resources. This paper surveys a range of routing solutions, which can be categorized depending on the degree of the awareness of the algorithm: (1) QoS/Constraint-based routing solutions are aware of traffic requirements of individual connection requests; (2) Traffic-aware routing solutions assume knowledge of the location of communicating ingress-egress pairs and possibly the traffic demands among them; (3) Routing solutions that are both QoS-aware as (1) and traffic-aware as (2); (4) Best-effort solutions are oblivious to both traffic and QoS requirements, but are adaptive only to current resource availability. The best performance can be achieved by having all possible knowledge so that while finding a path for an individual flow, one can make a smart choice among feasible paths to increase the chances of supporting future requests. However, this usually comes at the cost of increased complexity and decreased scalability. In this paper, we discuss such cost-performance tradeoffs by surveying proposed heuristic solutions and hybrid approaches.
Resumo:
Many real world image analysis problems, such as face recognition and hand pose estimation, involve recognizing a large number of classes of objects or shapes. Large margin methods, such as AdaBoost and Support Vector Machines (SVMs), often provide competitive accuracy rates, but at the cost of evaluating a large number of binary classifiers, thus making it difficult to apply such methods when thousands or millions of classes need to be recognized. This thesis proposes a filter-and-refine framework, whereby, given a test pattern, a small number of candidate classes can be identified efficiently at the filter step, and computationally expensive large margin classifiers are used to evaluate these candidates at the refine step. Two different filtering methods are proposed, ClassMap and OVA-VS (One-vs.-All classification using Vector Search). ClassMap is an embedding-based method, works for both boosted classifiers and SVMs, and tends to map the patterns and their associated classes close to each other in a vector space. OVA-VS maps OVA classifiers and test patterns to vectors based on the weights and outputs of weak classifiers of the boosting scheme. At runtime, finding the strongest-responding OVA classifier becomes a classical vector search problem, where well-known methods can be used to gain efficiency. In our experiments, the proposed methods achieve significant speed-ups, in some cases up to two orders of magnitude, compared to exhaustive evaluation of all OVA classifiers. This was achieved in hand pose recognition and face recognition systems where the number of classes ranges from 535 to 48,600.
Resumo:
Routing protocols for ad-hoc networks assume that the nodes forming the network are either under a single authority, or else that they would be altruistically forwarding data for other nodes with no expectation of a return. These assumptions are unrealistic since in ad-hoc networks, nodes are likely to be autonomous and rational (selfish), and thus unwilling to help unless they have an incentive to do so. Providing such incentives is an important aspect that should be considered when designing ad-hoc routing protocols. In this paper, we propose a dynamic, decentralized routing protocol for ad-hoc networks that provides incentives in the form of payments to intermediate nodes used to forward data for others. In our Constrained Selfish Routing (CSR) protocol, game-theoretic approaches are used to calculate payments (incentives) that ensure both the truthfulness of participating nodes and the fairness of the CSR protocol. We show through simulations that CSR is an energy efficient protocol and that it provides lower communication overhead in the best and average cases compared to existing approaches.
Resumo:
An improved technique for 3D head tracking under varying illumination conditions is proposed. The head is modeled as a texture mapped cylinder. Tracking is formulated as an image registration problem in the cylinder's texture map image. To solve the registration problem in the presence of lighting variation and head motion, the residual error of registration is modeled as a linear combination of texture warping templates and orthogonal illumination templates. Fast and stable on-line tracking is then achieved via regularized, weighted least squares minimization of the registration error. The regularization term tends to limit potential ambiguities that arise in the warping and illumination templates. It enables stable tracking over extended sequences. Tracking does not require a precise initial fit of the model; the system is initialized automatically using a simple 2-D face detector. The only assumption is that the target is facing the camera in the first frame of the sequence. The warping templates are computed at the first frame of the sequence. Illumination templates are precomputed off-line over a training set of face images collected under varying lighting conditions. Experiments in tracking are reported.
Resumo:
SomeCast is a novel paradigm for the reliable multicast of real-time data to a large set of receivers over the Internet. SomeCast is receiver-initiated and thus scalable in the number of receivers, the diverse characteristics of paths between senders and receivers (e.g. maximum bandwidth and round-trip-time), and the dynamic conditions of such paths (e.g. congestion-induced delays and losses). SomeCast enables receivers to dynamically adjust the rate at which they receive multicast information to enable the satisfaction of real-time QoS constraints (e.g. rate, deadlines, or jitter). This is done by enabling a receiver to join SOME number of concurrent multiCAST sessions, whereby each session delivers a portion of an encoding of the real-time data. By adjusting the number of such sessions dynamically, client-specific QoS constraints can be met independently. The SomeCast paradigm can be thought of as a generalization of the AnyCast (e.g. Dynamic Server Selection) and ManyCast (e.g. Digital Fountain) paradigms, which have been proposed in the literature to address issues of scalability of UniCast and MultiCast environments, respectively. In this paper we overview the SomeCast paradigm, describe an instance of a SomeCast protocol, and present simulation results that quantify the significant advantages gained from adopting such a protocol for the reliable multicast of data to a diverse set of receivers subject to real-time QoS constraints.
Resumo:
The cost and complexity of deploying measurement infrastructure in the Internet for the purpose of analyzing its structure and behavior is considerable. Basic questions about the utility of increasing the number of measurements and/or measurement sites have not yet been addressed which has lead to a "more is better" approach to wide-area measurements. In this paper, we quantify the marginal utility of performing wide-area measurements in the context of Internet topology discovery. We characterize topology in terms of nodes, links, node degree distribution, and end-to-end flows using statistical and information-theoretic techniques. We classify nodes discovered on the routes between a set of 8 sources and 1277 destinations to differentiate nodes which make up the so called "backbone" from those which border the backbone and those on links between the border nodes and destination nodes. This process includes reducing nodes that advertise multiple interfaces to single IP addresses. We show that the utility of adding sources goes down significantly after 2 from the perspective of interface, node, link and node degree discovery. We show that the utility of adding destinations is constant for interfaces, nodes, links and node degree indicating that it is more important to add destinations than sources. Finally, we analyze paths through the backbone and show that shared link distributions approximate a power law indicating that a small number of backbone links in our study are very heavily utilized.
Resumo:
Moving cameras are needed for a wide range of applications in robotics, vehicle systems, surveillance, etc. However, many foreground object segmentation methods reported in the literature are unsuitable for such settings; these methods assume that the camera is fixed and the background changes slowly, and are inadequate for segmenting objects in video if there is significant motion of the camera or background. To address this shortcoming, a new method for segmenting foreground objects is proposed that utilizes binocular video. The method is demonstrated in the application of tracking and segmenting people in video who are approximately facing the binocular camera rig. Given a stereo image pair, the system first tries to find faces. Starting at each face, the region containing the person is grown by merging regions from an over-segmented color image. The disparity map is used to guide this merging process. The system has been implemented on a consumer-grade PC, and tested on video sequences of people indoors obtained from a moving camera rig. As can be expected, the proposed method works well in situations where other foreground-background segmentation methods typically fail. We believe that this superior performance is partly due to the use of object detection to guide region merging in disparity/color foreground segmentation, and partly due to the use of disparity information available with a binocular rig, in contrast with most previous methods that assumed monocular sequences.
Resumo:
Temporal structure in skilled, fluent action exists at several nested levels. At the largest scale considered here, short sequences of actions that are planned collectively in prefrontal cortex appear to be queued for performance by a cyclic competitive process that operates in concert with a parallel analog representation that implicitly specifies the relative priority of elements of the sequence. At an intermediate scale, single acts, like reaching to grasp, depend on coordinated scaling of the rates at which many muscles shorten or lengthen in parallel. To ensure success of acts such as catching an approaching ball, such parallel rate scaling, which appears to be one function of the basal ganglia, must be coupled to perceptual variables, such as time-to-contact. At a fine scale, within each act, desired rate scaling can be realized only if precisely timed muscle activations first accelerate and then decelerate the limbs, to ensure that muscle length changes do not under- or over-shoot the amounts needed for the precise acts. Each context of action may require a much different timed muscle activation pattern than similar contexts. Because context differences that require different treatment cannot be known in advance, a formidable adaptive engine-the cerebellum-is needed to amplify differences within, and continuosly search, a vast parallel signal flow, in order to discover contextual "leading indicators" of when to generate distinctive parallel patterns of analog signals. From some parts of the cerebellum, such signals controls muscles. But a recent model shows how the lateral cerebellum, such signals control muscles. But a recent model shows how the lateral cerebellum may serve the competitive queuing system (in frontal cortex) as a repository of quickly accessed long-term sequence memories. Thus different parts of the cerebellum may use the same adaptive engine system design to serve the lowest and the highest of the three levels of temporal structure treated. If so, no one-to-one mapping exists between levels of temporal structure and major parts of the brain. Finally, recent data cast doubt on network-delay models of cerebellar adaptive timing.