2 resultados para Petroleum.
em B-Digital - Universidade Fernando Pessoa - Portugal
Resumo:
This schematic geological cross-section of Angola offshore is representative of the majority of the Atlantic-type divergent margins. It illustrates the main geological features allowing to understand the different petroleum systems occurring, particularly, in South Atlantic divergent margins : (i) Pre-Pangea rocks (Precambrian granite-gneiss basement, volcanic rocks an/ or Paleozoic sediments, more or less, metamorphosed), which lie underneath the pre-rifting unconformity (PRU), in blue in the cross-section ; (ii) The rift-type basins developed during the lengthening of the Pangea supercontinent ; (iii) The breakup unconformity (BUU), which highlight the upper limit of the rift-type basins, in which organic rich lacustrine shales with a parallel internal configuration are potential source-rocks (organic matter type I) ; (iv) The SDRs (seaward dipping reflectors), which, generally, do not have any generating hydrocarbon potential (just 5 m of lacustrine shales are known in Austral basin) ; (v) The BUU is fossilized by SDRs (subaerial volcanism) or by margin infra-salt sediments (forming the mistakenly called by some American geoscientists "sag basin") ; (vi) The Loeme salt basin, which is a twin of the Brazilian salt basin, that is to say, that both basins have always been individualized ; (vii) The transgressive (backstepping) and regressive (forestepping) phases of the post-Pangea continental encroachment cycle ; (v) The interface between these sedimentary phases, correspond to the emplacement of potential marine source-rocks (organic matter type-II) ; (vi) Potential dispersive source rocks (organic matter type III) are possible in the regressive sedimentary interval.
Resumo:
In spite of the great amount of emerald deposits throughout the world, the priorities in quality and volume of extracted rough material are the sites of Colombia (Muzo and Chivor emerald belts). This sites are know even before the Spanish conquistadores. Emeralds were extracted from Somondoco mine (today Chivor) since 1537 and from Muzo in 1567. Contrariwise to the majority of the emerald deposits of the world, which are associated with granitic rocks, the Colombian emerald deposits are associated with hydrofracturing (the main factor controlling emerald mineralization) and hydrothermal fluids, rich in beryl, chrome and vanadium, induced by a tectonic inversion of the deep Mesozoic backarc basin, which is also responsible of the majority of the petroleum systems of the foredeep and foldbelt areas (maturation of the source-rocks andcreation of structural traps). The host rocks of the emeralds are carbonaceous calsiltites (calcareous schists) rich in organic matter of Lower Cretaceous age, which are cut by calcite veins, which, often, contain emeralds, particularly when they are folded. Indeed, since long time (Cheilletz, A. and Giulliani, G., 1996) suggested a two-stage model for the formation of the Colombian emeralds : (i) Stage I is characterized by décollement planes (early compressional tectonic regime) within the carbonaceous calsiltites, hydrothermal fluid infiltration and wall-rock metasomatic alteration ; (ii) Stage II (late tectonic regime) deforms the previous veins by thrust-related folds (development of stratiform and hydraulic breccia), which are synchronous of the emerald mineralization. The resulting tectonic structures are complex fold patterns characterized by propagation anticlines with emerald veins and emerald hydraulic breccia in the apexes, as in Quipama, Tendenquema and Chivor mines. Otherwise stated, since all emerald exploitations are, presently underground, exhaustive geological and particularly structural studies are required to reduce the probability of disappointments. The color of emeralds is from light green to thick green with obvious pleochroism. They appears with different colors when observed at different angles, especially with polarized light. The emeralds from Coscuez deposits have a homogeneous intensive color and bluish tone. At Muzo deposit, the emeralds have middle or dark green color with yellowish tone. At the Chivor deposits, the emeralds have less intensive green color with slight bluish tone. The typical inclusions are albite and pyrite, as well as long bubbles with three phase-inclusions according the zones of growth and along the crystal shapes.