1 resultado para singular spectrum analysis
em Repositorio Institucional de la Universidad Pública de Navarra - Espanha
Filtro por publicador
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (14)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Aquatic Commons (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (3)
- Archive of European Integration (1)
- Aston University Research Archive (9)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (20)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (18)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (37)
- Brock University, Canada (20)
- Bucknell University Digital Commons - Pensilvania - USA (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (3)
- CaltechTHESIS (6)
- Cambridge University Engineering Department Publications Database (12)
- CentAUR: Central Archive University of Reading - UK (34)
- Centro Hospitalar do Porto (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (57)
- Cochin University of Science & Technology (CUSAT), India (8)
- Coffee Science - Universidade Federal de Lavras (2)
- Collection Of Biostatistics Research Archive (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (6)
- Dalarna University College Electronic Archive (4)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (3)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (4)
- DigitalCommons@The Texas Medical Center (5)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (16)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Glasgow Theses Service (1)
- Helda - Digital Repository of University of Helsinki (7)
- Indian Institute of Science - Bangalore - Índia (77)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto de Engenharia Nuclear, Brazil - Carpe dIEN (4)
- Instituto Politécnico do Porto, Portugal (1)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Memorial University Research Repository (2)
- National Center for Biotechnology Information - NCBI (8)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (10)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (54)
- Queensland University of Technology - ePrints Archive (227)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (4)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (2)
- Repositorio Institucional de la Universidad Pública de Navarra - Espanha (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (72)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (5)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Scielo Uruguai (1)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (24)
- Universidade Complutense de Madrid (1)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (1)
- Université de Montréal (2)
- Université de Montréal, Canada (4)
- University of Connecticut - USA (1)
- University of Michigan (36)
- University of Queensland eSpace - Australia (9)
- WestminsterResearch - UK (3)
Resumo:
In the first part of this paper we reviewed the fingerprint classification literature from two different perspectives: the feature extraction and the classifier learning. Aiming at answering the question of which among the reviewed methods would perform better in a real implementation we end up in a discussion which showed the difficulty in answering this question. No previous comparison exists in the literature and comparisons among papers are done with different experimental frameworks. Moreover, the difficulty in implementing published methods was stated due to the lack of details in their description, parameters and the fact that no source code is shared. For this reason, in this paper we will go through a deep experimental study following the proposed double perspective. In order to do so, we have carefully implemented some of the most relevant feature extraction methods according to the explanations found in the corresponding papers and we have tested their performance with different classifiers, including those specific proposals made by the authors. Our aim is to develop an objective experimental study in a common framework, which has not been done before and which can serve as a baseline for future works on the topic. This way, we will not only test their quality, but their reusability by other researchers and will be able to indicate which proposals could be considered for future developments. Furthermore, we will show that combining different feature extraction models in an ensemble can lead to a superior performance, significantly increasing the results obtained by individual models.