1 resultado para feature vector
em Repositorio Institucional de la Universidad Pública de Navarra - Espanha
Filtro por publicador
- Repository Napier (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (14)
- Adam Mickiewicz University Repository (1)
- Applied Math and Science Education Repository - Washington - USA (1)
- Aquatic Commons (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Aston University Research Archive (3)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (3)
- Boston University Digital Common (17)
- Brock University, Canada (7)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CaltechTHESIS (4)
- Cambridge University Engineering Department Publications Database (91)
- CentAUR: Central Archive University of Reading - UK (82)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (57)
- Cochin University of Science & Technology (CUSAT), India (22)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (1)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (6)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (5)
- Greenwich Academic Literature Archive - UK (5)
- Helda - Digital Repository of University of Helsinki (17)
- Indian Institute of Science - Bangalore - Índia (180)
- Instituto Politécnico do Porto, Portugal (2)
- Massachusetts Institute of Technology (28)
- Ministerio de Cultura, Spain (5)
- National Center for Biotechnology Information - NCBI (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (137)
- Queensland University of Technology - ePrints Archive (179)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositorio de la Universidad de Cuenca (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositorio Institucional de la Universidad Pública de Navarra - Espanha (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (3)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (7)
- School of Medicine, Washington University, United States (1)
- Universidad Autónoma de Nuevo León, Mexico (13)
- Universidad de Alicante (2)
- Universidad Politécnica de Madrid (3)
- Universidade de Lisboa - Repositório Aberto (1)
- Universitat de Girona, Spain (3)
- Université de Lausanne, Switzerland (4)
- Université de Montréal, Canada (5)
- University of Canberra Research Repository - Australia (1)
- University of Queensland eSpace - Australia (2)
- University of Southampton, United Kingdom (7)
- University of Washington (3)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
This paper reviews the fingerprint classification literature looking at the problem from a double perspective. We first deal with feature extraction methods, including the different models considered for singular point detection and for orientation map extraction. Then, we focus on the different learning models considered to build the classifiers used to label new fingerprints. Taxonomies and classifications for the feature extraction, singular point detection, orientation extraction and learning methods are presented. A critical view of the existing literature have led us to present a discussion on the existing methods and their drawbacks such as difficulty in their reimplementation, lack of details or major differences in their evaluations procedures. On this account, an experimental analysis of the most relevant methods is carried out in the second part of this paper, and a new method based on their combination is presented.