1 resultado para Tourist literature analysis
em Repositorio Institucional de la Universidad Pública de Navarra - Espanha
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (29)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Aquatic Commons (8)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (3)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (9)
- Aston University Research Archive (6)
- B-Digital - Universidade Fernando Pessoa - Portugal (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (26)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (16)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (18)
- Boston University Digital Common (2)
- Brock University, Canada (16)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (10)
- CentAUR: Central Archive University of Reading - UK (39)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (7)
- Cochin University of Science & Technology (CUSAT), India (12)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (6)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (11)
- Digital Archives@Colby (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons @ Winthrop University (2)
- Digital Commons at Florida International University (3)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (1)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (2)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (10)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (5)
- Greenwich Academic Literature Archive - UK (3)
- Helda - Digital Repository of University of Helsinki (12)
- Indian Institute of Science - Bangalore - Índia (82)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (3)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (1)
- Portal de Revistas Científicas Complutenses - Espanha (5)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (68)
- Queensland University of Technology - ePrints Archive (198)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (17)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (5)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional da Universidade Federal de São Paulo - UNIFESP (1)
- Repositorio Institucional de la Universidad Pública de Navarra - Espanha (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (99)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (13)
- SAPIENTIA - Universidade do Algarve - Portugal (5)
- School of Medicine, Washington University, United States (4)
- Scielo España (1)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (6)
- Universidad Politécnica de Madrid (3)
- Universidade de Madeira (1)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (7)
- Universidade Metodista de São Paulo (2)
- Universitat de Girona, Spain (6)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (3)
- Université de Montréal, Canada (13)
- University of Canberra Research Repository - Australia (1)
- University of Michigan (9)
- University of Queensland eSpace - Australia (1)
- University of Southampton, United Kingdom (1)
- University of Washington (1)
- WestminsterResearch - UK (1)
Resumo:
In the first part of this paper we reviewed the fingerprint classification literature from two different perspectives: the feature extraction and the classifier learning. Aiming at answering the question of which among the reviewed methods would perform better in a real implementation we end up in a discussion which showed the difficulty in answering this question. No previous comparison exists in the literature and comparisons among papers are done with different experimental frameworks. Moreover, the difficulty in implementing published methods was stated due to the lack of details in their description, parameters and the fact that no source code is shared. For this reason, in this paper we will go through a deep experimental study following the proposed double perspective. In order to do so, we have carefully implemented some of the most relevant feature extraction methods according to the explanations found in the corresponding papers and we have tested their performance with different classifiers, including those specific proposals made by the authors. Our aim is to develop an objective experimental study in a common framework, which has not been done before and which can serve as a baseline for future works on the topic. This way, we will not only test their quality, but their reusability by other researchers and will be able to indicate which proposals could be considered for future developments. Furthermore, we will show that combining different feature extraction models in an ensemble can lead to a superior performance, significantly increasing the results obtained by individual models.