3 resultados para Asymptotic behaviour, Bayesian methods, Mixture models, Overfitting, Posterior concentration

em Repositorio Institucional de la Universidad Pública de Navarra - Espanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta es la versión no revisada del artículo: Inmaculada Higueras, Natalie Happenhofer, Othmar Koch, and Friedrich Kupka. 2014. Optimized strong stability preserving IMEX Runge-Kutta methods. J. Comput. Appl. Math. 272 (December 2014), 116-140. Se puede consultar la versión final en https://doi.org/10.1016/j.cam.2014.05.011

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper reviews the fingerprint classification literature looking at the problem from a double perspective. We first deal with feature extraction methods, including the different models considered for singular point detection and for orientation map extraction. Then, we focus on the different learning models considered to build the classifiers used to label new fingerprints. Taxonomies and classifications for the feature extraction, singular point detection, orientation extraction and learning methods are presented. A critical view of the existing literature have led us to present a discussion on the existing methods and their drawbacks such as difficulty in their reimplementation, lack of details or major differences in their evaluations procedures. On this account, an experimental analysis of the most relevant methods is carried out in the second part of this paper, and a new method based on their combination is presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objectives. This paper explores the use of regression models for estimating health status of schizophrenic patients, from a Bayesian perspective. Our aims are: 1- To obtain a set of values of health states of the EQ-5D based on self-assessed health from a sample of schizophrenic patients. 2- To analyse the differences in the health status and in patients’ perceptions of their health status between four mental-health districts in Spain. Methods. We develop two linear models with dummy variables. The first model seeks to obtain an index of the health status of the patients using a VAS as a dependent variable and the different dimensions of EQ-5D as regressors. The second model allows to analyse the differences between the self-assessed health status in the different geographic areas and also the differences between the patients’ self-assessed health states, irrespective of their actual health state, in the different geographic areas. The analysis is done using Bayesian approach with Gibbs sampling (computer program WinBUGS 1.4). Data concerning self-assessed EQ-5D with VAS from four geographic areas of schizophrenic patients were obtained for the purposes of this analysis. Results. We obtained the health status index for this sample and analysed the differences for this index between the four geographic areas. Our study reveals variables that explain the differences in patients’ health status and differences in their health states assessment. We consider four possible scenarios.