2 resultados para wood fuels
em Academic Archive On-line (Karlstad University
Resumo:
Bioenergy is one of many contributors to reducing the use of fossil fuels in order to mitigate climate change by decreasing CO2-emissions, and the potential for biofuels are large. The wood fuel pellets are a refined biofuel made of sawdust, which is dried and compressed to achieve improved fuel and transportation properties. In 2007 the amount of wood fuel pellets used for heating purposes in Sweden was 1715000 tons. The aims of this work was: to examine the moisture content and emission of monoterpenes during the drying and pelletising steps of the pellets production (Paper I); to investigate how the recirculation of drying gases affects the energy efficiency of rotary dryers and how the energy efficiency is related to the capacity of the dryer. (Paper II); to analyse the causes of the problems encountered by household end-users of pellets and investigate whether an improved pellet quality standard could reduce these problems (Paper III); to investigate how the energy consumption of the pelletising machine and chosen pellet quality parameters were affected using an increased amount of rapeseed cake in wood fuel pellets (Paper IV); and to identify gaps of knowledge about wood fuel pellet technology and needs for further research on quality, environmental and health aspects throughout the wood fuel pellet chain, from sawdust to heat. (Paper V).
Resumo:
The present work, where additional value-creating processes in existing combined heat and power (CHP) structures have been examined, is motivated by a political- and consumer-driven strive towards a bioeconomy and a stagnation for the existing business models in large parts of the CHP sector. The research is based on cases where the integration of flash pyrolysis for co-production of bio-oil, co-gasification for production of fuel gas and synthetic biofuels as well as leaching of extractable fuel components in existing CHP plants have been simulated. In particular, this work has focused on the CHP plants that utilize boilers of fluidized bed (FB) type, where the concept of coupling a separate FB reactor to the FB of the boiler forms an important basis for the analyses. In such dual fluidized bed (DFB) technology, heat is transferred from the boiler to the new rector that is operating with other fluidization media than air, thereby enabling other thermochemical processes than combustion to take place. The result of this work shows that broader operations at existing CHP plants have the potential to enable production of significant volumes of chemicals and/or fuels with high efficiency, while maintaining heat supply to external customers. Based on the insight that the technical preconditions for a broader operation are favourable, the motivation and ability among the incumbents in the Swedish CHP sector to participate in a transition of their operation towards a biorefinery was examined. The result of this assessment showed that the incumbents believe that a broader operation can create significant values for their own operations, the society and the environment, but that they lack both a strong motivation as well as important abilities to move into the new technological fields. If the concepts of broader production are widely implemented in the Swedish FB based CHP sector, this can substantially contribute in the transition towards a bioeconomy.