4 resultados para energi
em Academic Archive On-line (Karlstad University
Resumo:
Water removal in paper manufacturing is an energy-intensive process. The dewatering process generally consists of four stages of which the first three stages include mechanical water removal through gravity filtration, vacuum dewatering and wet pressing. In the fourth stage, water is removed thermally, which is the most expensive stage in terms of energy use. In order to analyse water removal during a vacuum dewatering process, a numerical model was created by using a Level-Set method. Various different 2D structures of the paper model were created in MATLAB code with randomly positioned circular fibres with identical orientation. The model considers the influence of the forming fabric which supports the paper sheet during the dewatering process, by using volume forces to represent flow resistance in the momentum equation. The models were used to estimate the dry content of the porous structure for various dwell times. The relation between dry content and dwell time was compared to laboratory data for paper sheets with basis weights of 20 and 50 g/m2 exposed to vacuum levels between 20 kPa and 60 kPa. The comparison showed reasonable results for dewatering and air flow rates. The random positioning of the fibres influences the dewatering rate slightly. In order to achieve more accurate comparisons, the random orientation of the fibres needs to be considered, as well as the deformation and displacement of the fibres during the dewatering process.
Resumo:
Bioenergy is one of many contributors to reducing the use of fossil fuels in order to mitigate climate change by decreasing CO2-emissions, and the potential for biofuels are large. The wood fuel pellets are a refined biofuel made of sawdust, which is dried and compressed to achieve improved fuel and transportation properties. In 2007 the amount of wood fuel pellets used for heating purposes in Sweden was 1715000 tons. The aims of this work was: to examine the moisture content and emission of monoterpenes during the drying and pelletising steps of the pellets production (Paper I); to investigate how the recirculation of drying gases affects the energy efficiency of rotary dryers and how the energy efficiency is related to the capacity of the dryer. (Paper II); to analyse the causes of the problems encountered by household end-users of pellets and investigate whether an improved pellet quality standard could reduce these problems (Paper III); to investigate how the energy consumption of the pelletising machine and chosen pellet quality parameters were affected using an increased amount of rapeseed cake in wood fuel pellets (Paper IV); and to identify gaps of knowledge about wood fuel pellet technology and needs for further research on quality, environmental and health aspects throughout the wood fuel pellet chain, from sawdust to heat. (Paper V).
Resumo:
Because of global warming the energy production development has progressed towards more renewable energy sources. Biomass has great potential in this matter and pellet is already a big market that has increased seven times the past decade. A periodically strained woodchip resource market and statements of short supply in the future has got actors exploring opportunities with other commodities. Grasses such as Canary grass has shown great potential in this matter and in this study a wetland grass is tested as an additive, 0,5, 1,0, 1,5, and 1,9%, with spruce woodchips. The test production series was performed at a production unit located at the department of environmental and energy system at Karlstad University, Karlstad. Quality was controlled accordingly to the European standard and parameters such as energy consumption, moisture content, mechanical durability and bulk density was tested. For comparison, a sample with only spruce wood chips was produced, and a sample containing 1% of a commonly used additive, potato starch. The results showed that a decrease in energy consumption with 14% when 2% wetland grass was added, part of the decline may be due to the increased production flow compared with the reference sample. The positive effects on decrease in energy consumption, that 1% potato starch results in, is equal to reults from 1% wetlandgrass. This indicates lubricating properties in wetlandgrass. This is attributed to that herbaceous plants have a high content of extracts such as waxes and that they cause less friction in the press. Tests also showed that pellet with wetland grass did not qualify the European standard in terms of mechanical durability. Extracts can form a weak boundary layer in the pellet and cause this. A possible trend shows a better mechanical durability with more grass in pellets. The presence of different size of particles can be a reason. Moisture content qualifies according to the European standard but is below optimum 8%. This despite to relatively high moisture content in the mixer. Higher moisture content in the press would certainly result in a generally higher quality. Suggestions for future studies are to produce pellets with greater distribution on the wetland grass added, to easier interpret a connection. Also examine the extracts behavior with different moisture content. For a sustainable development accordingly renewable energy it is important to ensure the future commodity market for pellets. Further studies should be performed to help the development of alternative raw materials in conjunction with pellet production.
Resumo:
Att arbeta med migranter i psykiatrin innebär ett krävande emotionsarbete som tar tid och reflektion i anspråk. I en organisation där produktionen ständigt förväntas öka kan patient och lidande bli en marknadsekonomisk entitet som behandlare ska hantera i ett ökande tempo. Som följd av denna acceleration måste behandlare hitta strategier för att undvika att dräneras på emotionell energi.