1 resultado para TEREPHTHALATE BLENDS
em Academic Archive On-line (Karlstad University
Resumo:
In the last decades, intensive research has been carried out in order to replace oil-based polymers with bio-based polymers due to growing environmental concerns. So far, most of the barrier materials used in food packaging are petroleum-based materials. The purpose of the barrier is to protect the packaged food from oxygen, water vapour, water and fat. The mechanical and barrier properties of coatings based on starch-plasticizer and starch-poly(vinyl alcohol) (PVOH)-plasticizer blends have been studied in the work described in this thesis. The plasticizers used were glycerol, polyethylene glycol and citric acid. In a second step, polyethylene coatings were extruded onto paperboard pre-coated with a starch-PVOH-plasticizer blend. The addition of PVOH to the starch increased the flexibility of the film. Curing of the film led to a decrease in flexibility and an increase in tensile strength. The flexibility of the starch-PVOH films was increased more when glycerol or polyethylene glycol was added than citric acid. The storage modulus of the starch-PVOH films containing citric acid increased substantially at high temperature. It was seen that the addition of polyethylene glycol or citric acid to the starch-PVOH blend resulted in an enrichment of PVOH at the surface of the films. Tensile tests on the films indicated that citric acid acted as a compatibilizer and increased the compatibility of the starch and PVOH in the blend. The addition of citric acid to the coating recipe substantially decreased the water vapour transmission rate through the starch-PVOH coated paperboard, which indicated that citric acid acts as a cross-linker for starch and/or PVOH. The starch-PVOH coatings containing citric acid showed oxygen-barrier properties similar to those of pure PVOH or of a starch-PVOH blend without plasticizer when four coating layers were applied on a paperboard. The oxygen-barrier properties of coatings based on a starch-PVOH blend containing citric acid indicated a cross-linking and increase in compatibility of the starch-PVOH blends. Polyethylene extrusion coating on a pre-coated paperboard resulted in a clear reduction in the oxygen transmission rate for all the pre-coating formulations containing plasticizers. The addition of a plasticizer to the pre-coating reduced the adhesion of polyethylene to pre-coated board. Polyethylene extrusion coating gave a board with a lower oxygen transmission rate when the paperboard was pre-coated with a polyethylene-glycol-containing formulation than with a citric-acid-containing formulation. The addition of polyethylene glycol to pre-coatings indicated an increase in wetting of the pre-coated paperboard by the polyethylene melt, and this may have sealed the small defects in the pre-coating leading to low oxygen transmission rate. The increase in brittleness of starch-PVOH films containing citric acid at a high temperature seemed to have a dominating effect on the barrier properties developed by the extrusion coating process.