2 resultados para Cast iron
em Academic Archive On-line (Jönköping University
Resumo:
Shrinkage porosity as a volume change related casting defect in lamellar cast iron was reported in theliterature to form during solidification in connection to the dendrite coherency. The present work includesan experimental study on dendrite coherency – also called columnar-to-equiaxed transition in lamellar castiron using thermal analysis and expansion force measurements. Investigation was carried out in order tostudy the mechanism of dendrite coherency formation. Cylindrical test bars were cast from the same alloywith different pouring temperature, amount of inoculant and time between the addition of inoculant andstart of pouring the samples. Cooling rate and expansion force was recorded as a function of time. Anumerical algorithm based on temperature differences measured under solidification was used to inter-pret the solidification process. Three different methods have been compared to determine the columnarto equiaxed transition. The compared methods were based on registered temperature differences, basedon registered expansion forces during the volume change of the solidifying samples and based on the cal-culated released latent heat of crystallization. The obtained results indicate a considerable influence on theformation and progress of coherency due to variation of casting parameters. It has been shown that thecoherency is not a single event at a defined time moment rather a process progressing during a timeinterval.
Resumo:
The mechanical behaviour and performance of a ductile iron component is highly dependent on the local variations in solidification conditions during the casting process. Here we show a framework which combine a previously developed closed chain of simulations for cast components with a micro-scale Finite Element Method (FEM) simulation of the behaviour and performance of the microstructure. A casting process simulation, including modelling of solidification and mechanical material characterization, provides the basis for a macro-scale FEM analysis of the component. A critical region is identified to which the micro-scale FEM simulation of a representative microstructure, generated using X-ray tomography, is applied. The mechanical behaviour of the different microstructural phases are determined using a surrogate model based optimisation routine and experimental data. It is discussed that the approach enables a link between solidification- and microstructure-models and simulations of as well component as microstructural behaviour, and can contribute with new understanding regarding the behaviour and performance of different microstructural phases and morphologies in industrial ductile iron components in service.