19 resultados para Jensen polynomials
em Aberystwyth University Repository - Reino Unido
Resumo:
R. Jensen and Q. Shen. Fuzzy-Rough Sets Assisted Attribute Selection. IEEE Transactions on Fuzzy Systems, vol. 15, no. 1, pp. 73-89, 2007.
Resumo:
R. Jensen and Q. Shen. Semantics-Preserving Dimensionality Reduction: Rough and Fuzzy-Rough Based Approaches. IEEE Transactions on Knowledge and Data Engineering, 16(12): 1457-1471. 2004.
Resumo:
C.G.G. Aitken, Q. Shen, R. Jensen and B. Hayes. The evaluation of evidence for exponentially distributed data. Computational Statistics & Data Analysis, vol. 51, no. 12, pp. 5682-5693, 2007.
Resumo:
X. Wang, J. Yang, X. Teng, W. Xia, and R. Jensen. Feature Selection based on Rough Sets and Particle Swarm Optimization. Pattern Recognition Letters, vol. 28, no. 4, pp. 459-471, 2007.
Resumo:
Q. Shen and R. Jensen, 'Rough sets, their extensions and applications,' International Journal of Automation and Computing (IJAC), vol. 4, no. 3, pp. 217-218, 2007.
Resumo:
X. Wang, J. Yang, R. Jensen and X. Liu, 'Rough Set Feature Selection and Rule Induction for Prediction of Malignancy Degree in Brain Glioma,' Computer Methods and Programs in Biomedicine, vol. 83, no. 2, pp. 147-156, 2006.
Resumo:
R. Jensen and Q. Shen, 'Fuzzy-Rough Data Reduction with Ant Colony Optimization,' Fuzzy Sets and Systems, vol. 149, no. 1, pp. 5-20, 2005.
Resumo:
R. Jensen and Q. Shen, 'Fuzzy-Rough Attribute Reduction with Application to Web Categorization,' Fuzzy Sets and Systems, vol. 141, no. 3, pp. 469-485, 2004.
Resumo:
Q. Shen and R. Jensen, 'Selecting Informative Features with Fuzzy-Rough Sets and its Application for Complex Systems Monitoring,' Pattern Recognition, vol. 37, no. 7, pp. 1351-1363, 2004.
Resumo:
R. Jensen, 'Performing Feature Selection with ACO. Swarm Intelligence and Data Mining,' A. Abraham, C. Grosan and V. Ramos (eds.), Studies in Computational Intelligence, vol. 34, pp. 45-73. 2006.
Resumo:
Feature selection aims to determine a minimal feature subset from a problem domain while retaining a suitably high accuracy in representing the original features. Rough set theory (RST) has been used as such a tool with much success. RST enables the discovery of data dependencies and the reduction of the number of attributes contained in a dataset using the data alone, requiring no additional information. This chapter describes the fundamental ideas behind RST-based approaches and reviews related feature selection methods that build on these ideas. Extensions to the traditional rough set approach are discussed, including recent selection methods based on tolerance rough sets, variable precision rough sets and fuzzy-rough sets. Alternative search mechanisms are also highly important in rough set feature selection. The chapter includes the latest developments in this area, including RST strategies based on hill-climbing, genetic algorithms and ant colony optimization.
Resumo:
P. Lingras and R. Jensen, 'Survey of Rough and Fuzzy Hybridization,' Proceedings of the 16th International Conference on Fuzzy Systems (FUZZ-IEEE'07), pp. 125-130, 2007.
Resumo:
R. Jensen and Q. Shen, 'Tolerance-based and Fuzzy-Rough Feature Selection,' Proceedings of the 16th International Conference on Fuzzy Systems (FUZZ-IEEE'07), pp. 877-882, 2007.
Resumo:
R. Jensen and Q. Shen, 'Webpage Classification with ACO-enhanced Fuzzy-Rough Feature Selection,' Proceedings of the Fifth International Conference on Rough Sets and Current Trends in Computing (RSCTC 2006), LNAI 4259, pp. 147-156, 2006.
Resumo:
R. Jensen, Q. Shen and A. Tuson, 'Finding Rough Set Reducts with SAT,' Proceedings of the 10th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing, LNAI 3641, pp. 194-203, 2005.