32 resultados para Fuzzy number centroid
Resumo:
P. Lingras and R. Jensen, 'Survey of Rough and Fuzzy Hybridization,' Proceedings of the 16th International Conference on Fuzzy Systems (FUZZ-IEEE'07), pp. 125-130, 2007.
Resumo:
Z. Huang and Q. Shen. Preserving Piece-wise Linearity in Fuzzy Interpolation. Proceedings of the 2005 UK Workshop on Computational Intelligence, pages 105-112.
Resumo:
Z. Huang and Q. Shen. Fuzzy interpolation with generalized representative values. Proceedings of the 2004 UK Workshop on Computational Intelligence, pages 161-171.
Resumo:
R. Jensen and Q. Shen. Fuzzy-Rough Sets Assisted Attribute Selection. IEEE Transactions on Fuzzy Systems, vol. 15, no. 1, pp. 73-89, 2007.
Resumo:
R. Jensen and Q. Shen. Semantics-Preserving Dimensionality Reduction: Rough and Fuzzy-Rough Based Approaches. IEEE Transactions on Knowledge and Data Engineering, 16(12): 1457-1471. 2004.
Resumo:
X. Fu, Q. Shen and R. Zhao. 'Towards fuzzy compositional modelling,' In Proceedings of the 16th International Conference on Fuzzy Systems, 2007, pp. 1233-1238. Sponsorship: EPSRC
Resumo:
X. Fu and Q. Shen. 'Knowledge representation for fuzzy model composition', in Proceedings of the 21st International Workshop on Qualitative Reasoning, 2007, pp. 47-54. Sponsorship: EPSRC
Resumo:
R. Jensen and Q. Shen, 'Fuzzy-Rough Data Reduction with Ant Colony Optimization,' Fuzzy Sets and Systems, vol. 149, no. 1, pp. 5-20, 2005.
Resumo:
R. Jensen and Q. Shen, 'Fuzzy-Rough Attribute Reduction with Application to Web Categorization,' Fuzzy Sets and Systems, vol. 141, no. 3, pp. 469-485, 2004.
Resumo:
Q. Shen and R. Jensen, 'Selecting Informative Features with Fuzzy-Rough Sets and its Application for Complex Systems Monitoring,' Pattern Recognition, vol. 37, no. 7, pp. 1351-1363, 2004.
Resumo:
Feature selection aims to determine a minimal feature subset from a problem domain while retaining a suitably high accuracy in representing the original features. Rough set theory (RST) has been used as such a tool with much success. RST enables the discovery of data dependencies and the reduction of the number of attributes contained in a dataset using the data alone, requiring no additional information. This chapter describes the fundamental ideas behind RST-based approaches and reviews related feature selection methods that build on these ideas. Extensions to the traditional rough set approach are discussed, including recent selection methods based on tolerance rough sets, variable precision rough sets and fuzzy-rough sets. Alternative search mechanisms are also highly important in rough set feature selection. The chapter includes the latest developments in this area, including RST strategies based on hill-climbing, genetic algorithms and ant colony optimization.
Resumo:
R. Jensen and Q. Shen, 'Tolerance-based and Fuzzy-Rough Feature Selection,' Proceedings of the 16th International Conference on Fuzzy Systems (FUZZ-IEEE'07), pp. 877-882, 2007.
Resumo:
R. Jensen and Q. Shen, 'Webpage Classification with ACO-enhanced Fuzzy-Rough Feature Selection,' Proceedings of the Fifth International Conference on Rough Sets and Current Trends in Computing (RSCTC 2006), LNAI 4259, pp. 147-156, 2006.
Resumo:
Z. Huang and Q. Shen. Fuzzy interpolative reasoning via scale and move transformation. IEEE Transactions on Fuzzy Systems, 14(2):340-359.
Resumo:
K. Rasmani and Q. Shen. Data-driven fuzzy rule generation and its application for student academic performance evaluation. Applied Intelligence, 25(3):305-319, 2006.