2 resultados para uncertain volatility

em Abertay Research Collections - Abertay University’s repository


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last thirty years, the emergence and progression of biologging technology has led to great advances in marine predator ecology. Large databases of location and dive observations from biologging devices have been compiled for an increasing number of diving predator species (such as pinnipeds, sea turtles, seabirds and cetaceans), enabling complex questions about animal activity budgets and habitat use to be addressed. Central to answering these questions is our ability to correctly identify and quantify the frequency of essential behaviours, such as foraging. Despite technological advances that have increased the quality and resolution of location and dive data, accurately interpreting behaviour from such data remains a challenge, and analytical methods are only beginning to unlock the full potential of existing datasets. This review evaluates both traditional and emerging methods and presents a starting platform of options for future studies of marine predator foraging ecology, particularly from location and two-dimensional (time-depth) dive data. We outline the different devices and data types available, discuss the limitations and advantages of commonly-used analytical techniques, and highlight key areas for future research. We focus our review on pinnipeds - one of the most studied taxa of marine predators - but offer insights that will be applicable to other air-breathing marine predator tracking studies. We highlight that traditionally-used methods for inferring foraging from location and dive data, such as first-passage time and dive shape analysis, have important caveats and limitations depending on the nature of the data and the research question. We suggest that more holistic statistical techniques, such as state-space models, which can synthesise multiple track, dive and environmental metrics whilst simultaneously accounting for measurement error, offer more robust alternatives. Finally, we identify a need for more research to elucidate the role of physical oceanography, device effects, study animal selection, and developmental stages in predator behaviour and data interpretation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theoretical models of social learning predict that individuals can benefit from using strategies that specify when and whom to copy. Here the interaction of two social learning strategies, model age-based biased copying and copy when uncertain, was investigated. Uncertainty was created via a systematic manipulation of demonstration efficacy (completeness) and efficiency (causal relevance of some actions). The participants, 4- to 6-year-old children (N = 140), viewed both an adult model and a child model, each of whom used a different tool on a novel task. They did so in a complete condition, a near-complete condition, a partial demonstration condition, or a no-demonstration condition. Half of the demonstrations in each condition incorporated causally irrelevant actions by the models. Social transmission was assessed by first responses but also through children’s continued fidelity, the hallmark of social traditions. Results revealed a bias to copy the child model both on first response and in continued interactions. Demonstration efficacy and efficiency did not affect choice of model at first response but did influence solution exploration across trials, with demonstrations containing causally irrelevant actions decreasing exploration of alternative methods. These results imply that uncertain environments can result in canalized social learning from specific classes of mode