1 resultado para positive and negative selection
em Abertay Research Collections - Abertay University’s repository
Filtro por publicador
- Repository Napier (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Archive On-line (Karlstad University; Sweden) (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (7)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (5)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (19)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (16)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (47)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (5)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (69)
- Brock University, Canada (10)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (5)
- CentAUR: Central Archive University of Reading - UK (35)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (2)
- Cochin University of Science & Technology (CUSAT), India (1)
- Coffee Science - Universidade Federal de Lavras (3)
- Collection Of Biostatistics Research Archive (3)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (35)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (1)
- Digital Commons - Michigan Tech (4)
- Digital Commons @ DU | University of Denver Research (4)
- Digital Commons at Florida International University (14)
- Digital Repository at Iowa State University (1)
- DigitalCommons@The Texas Medical Center (19)
- DigitalCommons@University of Nebraska - Lincoln (4)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (17)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (4)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Georgian Library Association, Georgia (1)
- Glasgow Theses Service (2)
- Harvard University (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- Institute of Public Health in Ireland, Ireland (3)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico do Porto, Portugal (10)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (8)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (18)
- Nottingham eTheses (3)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- Publishing Network for Geoscientific & Environmental Data (6)
- QSpace: Queen's University - Canada (4)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (4)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (15)
- Repositório da Escola Nacional de Administração Pública (ENAP) (1)
- Repositório da Produção Científica e Intelectual da Unicamp (9)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (5)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (41)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (8)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (1)
- Scielo España (1)
- Scielo Saúde Pública - SP (79)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (3)
- Universidad de Alicante (4)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (7)
- Universidade do Minho (10)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (4)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universidade Técnica de Lisboa (1)
- Universita di Parma (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (129)
- Université de Montréal (2)
- Université de Montréal, Canada (12)
- University of Connecticut - USA (3)
- University of Michigan (30)
- University of Queensland eSpace - Australia (66)
- University of Washington (1)
- WestminsterResearch - UK (1)
Resumo:
This analysis paper presents previously unknown properties of some special cases of the Wright function whose consideration is necessitated by our work on probability theory and the theory of stochastic processes. Specifically, we establish new asymptotic properties of the particular Wright function 1Ψ1(ρ, k; ρ, 0; x) = X∞ n=0 Γ(k + ρn) Γ(ρn) x n n! (|x| < ∞) when the parameter ρ ∈ (−1, 0)∪(0, ∞) and the argument x is real. In the probability theory applications, which are focused on studies of the Poisson-Tweedie mixtures, the parameter k is a non-negative integer. Several representations involving well-known special functions are given for certain particular values of ρ. The asymptotics of 1Ψ1(ρ, k; ρ, 0; x) are obtained under numerous assumptions on the behavior of the arguments k and x when the parameter ρ is both positive and negative. We also provide some integral representations and structural properties involving the ‘reduced’ Wright function 0Ψ1(−−; ρ, 0; x) with ρ ∈ (−1, 0) ∪ (0, ∞), which might be useful for the derivation of new properties of members of the power-variance family of distributions. Some of these imply a reflection principle that connects the functions 0Ψ1(−−;±ρ, 0; ·) and certain Bessel functions. Several asymptotic relationships for both particular cases of this function are also given. A few of these follow under additional constraints from probability theory results which, although previously available, were unknown to analysts.