4 resultados para feeding in trays
em Abertay Research Collections - Abertay University’s repository
Resumo:
This study seeks to understand how the physiological constraints of diving may change on a daily and seasonal basis. Dive data were obtained from southern elephant seals (Mirounga leonina) from South Georgia using satellite relay data loggers. We analysed the longest (95th percentile) dive durations as proxies for physiological dive limits. A strong, significant relationship existed between the duration of these dives and the time of day and week of year in which they were performed. The depth of the deepest dives also showed a significant, but far less consistent, relationship with local time of day and season. Changes in the duration of the longest dives occurred irrespective of their depth. Dives were longest in the morning (04:00-12:00 h) and shortest in the evening (16:00-00:00 h). The size of the fluctuation varied among animals from 4.0 to 20.0 min. The daily pattern in dive depth was phase-shifted in relation to the diurnal rhythm in dive duration. Dives were deeper at midday and shallower around midnight. Greater daily changes in duration occurred in seals feeding in the open ocean than in those foraging on the continental shelf. The seasonal peak in the duration of the longest dives coincided with austral midwinter. The size of the increase in dive duration from autumn/spring to winter ranged from 11.5 to 30.0 min. Changes in depth of the longest dives were not consistently associated with particular times of year. The substantial diurnal and seasonal fluctuations in maximum dive duration may be a result of changes in the physiological capacity to remain submerged, in addition to temporal changes in the ecological constraints on dive behaviour. We speculate about the role of melatonin as a hormonal mediator of diving capability.
Resumo:
Background Ageing and type 2 diabetes mellitus (T2DM) are risk factors for skeletal muscle loss. We investigated whether anabolic resistance to feeding might underlie accelerated muscle loss in older people with T2DM and whether dysregulated mTOR signalling was implicated. Subjects 8 obese men with T2DM, and 12 age-matched controls were studied (age 68±3 vs. 68±6y; BMI: 30±2 vs. 27±5 kg·m-2). Methods Body composition was measured by dual-X-ray absorptiometry. Insulin and glucose were clamped at post-absorptive concentrations (13±2 vs. 9±3 mU·l-1; 7.4±1.9 vs. 4.6±0.4 mmol·l-1; T2DM vs. controls). Fractional synthetic rates (FSR) of myofibrillar and sarcoplasmic proteins were measured as the rate of incorporation of [13C] leucine during a primed, constant infusion of [1-13C] α-ketoisocaproic acid, 3 h after 10 or 20g of essential amino acids (EAA) were orally administered. Protein expression of total and phosphorylated mTOR signalling proteins was determined by Western blot analysis. Results Despite a significantly lower appendicular lean mass index and a greater fat mass index in T2DM vs. controls, basal myofibrillar and sarcoplasmic and post-prandial myofibrillar FSR were similar. After 20g EAA, stimulation of sarcoplasmic FSR was slightly blunted in T2DM patients. Furthermore, feeding 20g EAA increased phosphorylation of mTOR, p70S6k and 4E-BP1 by 60-100% in controls with no response observed in T2DM. Conclusions There was clear dissociation between changes in mTOR signalling versus changes in protein synthesis rates. However, the intact anabolic response of myofibrillar FSR to feeding in both groups suggests anabolic resistance may not explain accelerated muscle loss in T2DM.
Resumo:
Heat shock proteins (HSPs) and antioxidants are key cellular defenses against stress. Seals routinely undergo protracted fasting, which is normally associated with physiological stress in other animals. We tested the hypotheses that (1) relative HSP70 protein abundance is higher in liver and blubber of fasting relative to suckling wild gray seal pups; (2) differences in HSP70 are mirrored in tissue superoxide dismutase (SOD) and catalase activity, as well as glutathione levels; (3) extracellular HSP70 correlates with hepatic and blubber HSP70 abundance; and (4) protein carbonylation, an index of oxidative damage, is lower in tissues with higher levels of these cellular stress markers. In contrast to our expectation, suckling pups had higher relative HSP70 abundance and glutathione levels in liver and blubber and higher hepatic catalase activity. Plasma HSP70 did not correlate with liver or blubber abundance of the protein. Suckling pups did not experience greater protein carbonylation, suggesting that cellular protective mechanisms prevent protein damage despite an apparent increase in cellular stress. SOD activity was not affected by nutritional state, but in blubber tissue, it was positively correlated with blubber thickness. Greater requirements for antioxidants and HSPs in suckling pups or in animals with thicker blubber could arise from rapid protein synthesis, high metabolic fuel availability, and/or exposure to lipophilic toxins. Developmental and nutritional changes in cellular defenses have important implications for gray seals’ susceptibility to additional stress exposure.
Resumo:
This study used supplementary feeding to test the hypothesis that fuel partitioning during the postweaning fast in grey seal pups is affected by size and composition of energy reserves at weaning, and by extra provisioning. Mass and body composition changes were measured during suckling and fasting to investigate the effect of natural differences in energy reserves at weaning on subsequent allocation of fat and protein to energy use. We fed seven pups for 5 days after weaning, to investigate the effect of increased fuel availability, and particularly protein, on fuel utilisation. After correcting for protein used during the moult, the proportional contribution of fat was 86–99% of total energy use. Pups with greater energy reserves, i.e. those that were heavier and fatter at weaning, had higher rates of fat and energy use. There was no significant relationship between adiposity at weaning and proportional contribution of fat to energy use, perhaps due to a limited sample size or range of body masses and adiposity. Supplemented individuals used energy, specifically fat, much faster and utilised proportionally less of their endogenous protein by departure than non-supplemented individuals. Fat metabolism contributed a similar percentage to daily energy use in both groups. These findings show that pups spare protein, even when energy use is dramatically increased. Pups that receive greater maternal provisioning and lay down more protein may have increased survival chances at sea. This study highlights the importance of protein reserves in first year survival of grey seal pups.