4 resultados para fat mass

em Abertay Research Collections - Abertay University’s repository


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background Ageing and type 2 diabetes mellitus (T2DM) are risk factors for skeletal muscle loss. We investigated whether anabolic resistance to feeding might underlie accelerated muscle loss in older people with T2DM and whether dysregulated mTOR signalling was implicated. Subjects 8 obese men with T2DM, and 12 age-matched controls were studied (age 68±3 vs. 68±6y; BMI: 30±2 vs. 27±5 kg·m-2). Methods Body composition was measured by dual-X-ray absorptiometry. Insulin and glucose were clamped at post-absorptive concentrations (13±2 vs. 9±3 mU·l-1; 7.4±1.9 vs. 4.6±0.4 mmol·l-1; T2DM vs. controls). Fractional synthetic rates (FSR) of myofibrillar and sarcoplasmic proteins were measured as the rate of incorporation of [13C] leucine during a primed, constant infusion of [1-13C] α-ketoisocaproic acid, 3 h after 10 or 20g of essential amino acids (EAA) were orally administered. Protein expression of total and phosphorylated mTOR signalling proteins was determined by Western blot analysis. Results Despite a significantly lower appendicular lean mass index and a greater fat mass index in T2DM vs. controls, basal myofibrillar and sarcoplasmic and post-prandial myofibrillar FSR were similar. After 20g EAA, stimulation of sarcoplasmic FSR was slightly blunted in T2DM patients. Furthermore, feeding 20g EAA increased phosphorylation of mTOR, p70S6k and 4E-BP1 by 60-100% in controls with no response observed in T2DM. Conclusions There was clear dissociation between changes in mTOR signalling versus changes in protein synthesis rates. However, the intact anabolic response of myofibrillar FSR to feeding in both groups suggests anabolic resistance may not explain accelerated muscle loss in T2DM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Animals that fast during breeding and/or development, such as phocids, must regulate energy balance carefully to maximize reproductive fitness and survival probability. Adiponectin, produced by adipose tissue, contributes to metabolic regulation by modulating sensitivity to insulin, increasing fatty acid oxidation by liver and muscle, and promoting adipogenesis and lipid storage in fat tissue. We tested the hypotheses that (1) circulating adiponectin, insulin, or relative adiponectin gene expression is related to nutritional state, body mass, and mass gain in wild gray seal pups; (2) plasma adiponectin or insulin is related to maternal lactation duration, body mass, percentage milk fat, or free fatty acid (FFA) concentration; and (3) plasma adiponectin and insulin are correlated with circulating FFA in females and pups. In pups, plasma adiponectin decreased during suckling (linear mixed-effects model [LME]: T = 4.49; P < 0.001) and the early postweaning fast (LME: T = 3.39; P = 0.004). In contrast, their blubber adiponectin gene expression was higher during the early postweaning fast than early in suckling (LME: T = 2.11; P = 0.046). Insulin levels were significantly higher in early (LME: T = 3.52; P = 0.004) and late (LME: T = 6.99; P < 0.001) suckling than in fasting and, given the effect of nutritional state, were also positively related to body mass (LME: T = 3.58; P = 0.004). Adiponectin and insulin levels did not change during lactation and were unrelated to milk FFA or percentage milk fat in adult females. Our data suggest that adiponectin, in conjunction with insulin, may facilitate fat storage in seals and is likely to be particularly important in the development of blubber reserves in pups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seals must manage their energy reserves carefully while they fast on land to ensure that they go to sea with sufficient fuel to sustain them until they find food. Glucocorticoids (GCs) have been implicated in the control of fuel metabolism and termination of fasting in pinnipeds. Here we tested the hypothesis that dexamethasone, an artificial GC, increases fat and protein catabolism, and induces departure from the breeding colony in wild, fasting grey seal pups. A single intramuscular dose of dexamethasone completely suppressed cortisol production for 24–72 h, demonstrating activation of GC receptors. In experiment 1, we compared the effects of a single dose of dexamethasone or saline administered 10 days after weaning on fasting mass and body composition changes, cortisol, blood urea nitrogen (BUN) and glucose levels, and timing of departure from the colony. In experiment 2, we investigated the effects of dexamethasone on short-term (5 days) changes in mass loss, body composition and BUN levels. In experiment 1, dexamethasone induced a short-lived increase in mass loss, but there was no difference in timing of departure between dexamethasone- and saline-treated pups (N=10). In experiment 2, dexamethasone increased protein and water loss and prevented a decrease in BUN levels (N=11). Our data suggest changes in cortisol contribute to regulation of protein catabolism in fasting seal pups, irrespective of the sex of the animal, but do not terminate fasting. By affecting the rate of protein depletion, lasting changes in cortisol levels could influence the amount of time seal pups have to find food, and thus may have important consequences for their survival.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study used supplementary feeding to test the hypothesis that fuel partitioning during the postweaning fast in grey seal pups is affected by size and composition of energy reserves at weaning, and by extra provisioning. Mass and body composition changes were measured during suckling and fasting to investigate the effect of natural differences in energy reserves at weaning on subsequent allocation of fat and protein to energy use. We fed seven pups for 5 days after weaning, to investigate the effect of increased fuel availability, and particularly protein, on fuel utilisation. After correcting for protein used during the moult, the proportional contribution of fat was 86–99% of total energy use. Pups with greater energy reserves, i.e. those that were heavier and fatter at weaning, had higher rates of fat and energy use. There was no significant relationship between adiposity at weaning and proportional contribution of fat to energy use, perhaps due to a limited sample size or range of body masses and adiposity. Supplemented individuals used energy, specifically fat, much faster and utilised proportionally less of their endogenous protein by departure than non-supplemented individuals. Fat metabolism contributed a similar percentage to daily energy use in both groups. These findings show that pups spare protein, even when energy use is dramatically increased. Pups that receive greater maternal provisioning and lay down more protein may have increased survival chances at sea. This study highlights the importance of protein reserves in first year survival of grey seal pups.