3 resultados para Third Party non-signatory

em Abertay Research Collections - Abertay University’s repository


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Digital forensics is a rapidly expanding field, due to the continuing advances in computer technology and increases in data stage capabilities of devices. However, the tools supporting digital forensics investigations have not kept pace with this evolution, often leaving the investigator to analyse large volumes of textual data and rely heavily on their own intuition and experience. Aim: This research proposes that given the ability of information visualisation to provide an end user with an intuitive way to rapidly analyse large volumes of complex data, such approached could be applied to digital forensics datasets. Such methods will be investigated; supported by a review of literature regarding the use of such techniques in other fields. The hypothesis of this research body is that by utilising exploratory information visualisation techniques in the form of a tool to support digital forensic investigations, gains in investigative effectiveness can be realised. Method:To test the hypothesis, this research examines three different case studies which look at different forms of information visualisation and their implementation with a digital forensic dataset. Two of these case studies take the form of prototype tools developed by the researcher, and one case study utilises a tool created by a third party research group. A pilot study by the researcher is conducted on these cases, with the strengths and weaknesses of each being drawn into the next case study. The culmination of these case studies is a prototype tool which was developed to resemble a timeline visualisation of the user behaviour on a device. This tool was subjected to an experiment involving a class of university digital forensics students who were given a number of questions about a synthetic digital forensic dataset. Approximately half were given the prototype tool, named Insight, to use, and the others given a common open-source tool. The assessed metrics included: how long the participants took to complete all tasks, how accurate their answers to the tasks were, and how easy the participants found the tasks to complete. They were also asked for their feedback at multiple points throughout the task. Results:The results showed that there was a statistically significant increase in accuracy for one of the six tasks for the participants using the Insight prototype tool. Participants also found completing two of the six tasks significantly easier when using the prototype tool. There were no statistically significant different difference between the completion times of both participant groups. There were no statistically significant differences in the accuracy of participant answers for five of the six tasks. Conclusions: The results from this body of research show that there is evidence to suggest that there is the potential for gains in investigative effectiveness when information visualisation techniques are applied to a digital forensic dataset. Specifically, in some scenarios, the investigator can draw conclusions which are more accurate than those drawn when using primarily textual tools. There is also evidence so suggest that the investigators found these conclusions to be reached significantly more easily when using a tool with a visual format. None of the scenarios led to the investigators being at a significant disadvantage in terms of accuracy or usability when using the prototype visual tool over the textual tool. It is noted that this research did not show that the use of information visualisation techniques leads to any statistically significant difference in the time taken to complete a digital forensics investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Disruptive colouration is a visual camouflage composed of false edges and boundaries. Many disruptively camouflaged animals feature enhanced edges; light patches are surrounded by a lighter outline and/or a dark patches are surrounded by a darker outline. This camouflage is particularly common in amphibians, reptiles and lepidopterans. We explored the role that this pattern has in creating effective camouflage. In a visual search task utilising an ultra-large display area mimicking search tasks that might be found in nature, edge enhanced disruptive camouflage increases crypsis, even on substrates that do not provide an obvious visual match. Specifically, edge enhanced camouflage is effective on backgrounds both with and without shadows; i.e. this is not solely due to background matching of the dark edge enhancement element with the shadows. Furthermore, when the dark component of the edge enhancement is omitted the camouflage still provided better crypsis than control patterns without edge enhancement. This kind of edge enhancement improved camouflage on all background types. Lastly, we show that edge enhancement can create a perception of multiple surfaces. We conclude that edge enhancement increases the effectiveness of disruptive camouflage through mechanisms that may include the improved disruption of the object outline by implying pictorial relief.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current Ambient Intelligence and Intelligent Environment research focuses on the interpretation of a subject’s behaviour at the activity level by logging the Activity of Daily Living (ADL) such as eating, cooking, etc. In general, the sensors employed (e.g. PIR sensors, contact sensors) provide low resolution information. Meanwhile, the expansion of ubiquitous computing allows researchers to gather additional information from different types of sensor which is possible to improve activity analysis. Based on the previous research about sitting posture detection, this research attempts to further analyses human sitting activity. The aim of this research is to use non-intrusive low cost pressure sensor embedded chair system to recognize a subject’s activity by using their detected postures. There are three steps for this research, the first step is to find a hardware solution for low cost sitting posture detection, second step is to find a suitable strategy of sitting posture detection and the last step is to correlate the time-ordered sitting posture sequences with sitting activity. The author initiated a prototype type of sensing system called IntelliChair for sitting posture detection. Two experiments are proceeded in order to determine the hardware architecture of IntelliChair system. The prototype looks at the sensor selection and integration of various sensor and indicates the best for a low cost, non-intrusive system. Subsequently, this research implements signal process theory to explore the frequency feature of sitting posture, for the purpose of determining a suitable sampling rate for IntelliChair system. For second and third step, ten subjects are recruited for the sitting posture data and sitting activity data collection. The former dataset is collected byasking subjects to perform certain pre-defined sitting postures on IntelliChair and it is used for posture recognition experiment. The latter dataset is collected by asking the subjects to perform their normal sitting activity routine on IntelliChair for four hours, and the dataset is used for activity modelling and recognition experiment. For the posture recognition experiment, two Support Vector Machine (SVM) based classifiers are trained (one for spine postures and the other one for leg postures), and their performance evaluated. Hidden Markov Model is utilized for sitting activity modelling and recognition in order to establish the selected sitting activities from sitting posture sequences.2. After experimenting with possible sensors, Force Sensing Resistor (FSR) is selected as the pressure sensing unit for IntelliChair. Eight FSRs are mounted on the seat and back of a chair to gather haptic (i.e., touch-based) posture information. Furthermore, the research explores the possibility of using alternative non-intrusive sensing technology (i.e. vision based Kinect Sensor from Microsoft) and find out the Kinect sensor is not reliable for sitting posture detection due to the joint drifting problem. A suitable sampling rate for IntelliChair is determined according to the experiment result which is 6 Hz. The posture classification performance shows that the SVM based classifier is robust to “familiar” subject data (accuracy is 99.8% with spine postures and 99.9% with leg postures). When dealing with “unfamiliar” subject data, the accuracy is 80.7% for spine posture classification and 42.3% for leg posture classification. The result of activity recognition achieves 41.27% accuracy among four selected activities (i.e. relax, play game, working with PC and watching video). The result of this thesis shows that different individual body characteristics and sitting habits influence both sitting posture and sitting activity recognition. In this case, it suggests that IntelliChair is suitable for individual usage but a training stage is required.