2 resultados para Pt-based nanoparticles

em Abertay Research Collections - Abertay University’s repository


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Poly N-vinylcaprolactam-co-acrylamidophenylboronic acid p(NVCL-co-AAPBA) was prepared from N-vinylcaprolactam (NVCL) and 3-acrylamidophenylboronic acid (AAPBA), using 2,2-azobisisobutyronitrile (AIBN) as initiator. The synthesis and structure of the polymer were examined by Fourier Transform infrared spectroscopy (FT-IR) and 1H-NMR. Dynamic light scattering (DLS), lower critical solution temperature (LCST) and transmission electron microscopy (TEM) were utilized to characterize the nanoparticles, CD spectroscopy was used to determine if there were any changes to the conformation of the insulin, and cell and animal toxicity were also investigated. The prepared nanoparticles were found to be monodisperse submicron particles and were glucose- and temperature-sensitive. In addition, the nanoparticles have good insulin-loading characteristics, do not affect the conformation of the insulin and show low-toxicity to cells and animals. These p(NVCL-co-AAPBA) nanoparticles may have some value for insulin or other hypoglycemic protein delivery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method provided for the deposition of nanostructured ZnO on cotton fabric to introduce antibacterial functionality was presented in this article. This strategy enabled fabric to be coated with inorganic-based functional materials through in situ synthesis of nanoparticles using ultrasonic irradiation. The amino-terminated silicon sol (AEAPTS) was employed to generate nanostructured ZnO, and the mechanism of the ultrasound-assisted coating was proposed. Antibacterial activities, UV protection and other properties of ZnO-loaded cotton characterized by SEM, FTIR, XRD and TGA were investigated. The results indicated that ZnO-loaded cotton exhibited excellent UV protective property, efficient antibacterial activities, well water-resistant effect, together with moderate cytotoxicity against L929 and lower tensile strength. The developed method provides not only a facile way for in situ synthesis of ZnO on textile but also the production of antibacterial materials for healthcare applications.