2 resultados para Protein depletion

em Abertay Research Collections - Abertay University’s repository


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Seals must manage their energy reserves carefully while they fast on land to ensure that they go to sea with sufficient fuel to sustain them until they find food. Glucocorticoids (GCs) have been implicated in the control of fuel metabolism and termination of fasting in pinnipeds. Here we tested the hypothesis that dexamethasone, an artificial GC, increases fat and protein catabolism, and induces departure from the breeding colony in wild, fasting grey seal pups. A single intramuscular dose of dexamethasone completely suppressed cortisol production for 24–72 h, demonstrating activation of GC receptors. In experiment 1, we compared the effects of a single dose of dexamethasone or saline administered 10 days after weaning on fasting mass and body composition changes, cortisol, blood urea nitrogen (BUN) and glucose levels, and timing of departure from the colony. In experiment 2, we investigated the effects of dexamethasone on short-term (5 days) changes in mass loss, body composition and BUN levels. In experiment 1, dexamethasone induced a short-lived increase in mass loss, but there was no difference in timing of departure between dexamethasone- and saline-treated pups (N=10). In experiment 2, dexamethasone increased protein and water loss and prevented a decrease in BUN levels (N=11). Our data suggest changes in cortisol contribute to regulation of protein catabolism in fasting seal pups, irrespective of the sex of the animal, but do not terminate fasting. By affecting the rate of protein depletion, lasting changes in cortisol levels could influence the amount of time seal pups have to find food, and thus may have important consequences for their survival.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study used supplementary feeding to test the hypothesis that fuel partitioning during the postweaning fast in grey seal pups is affected by size and composition of energy reserves at weaning, and by extra provisioning. Mass and body composition changes were measured during suckling and fasting to investigate the effect of natural differences in energy reserves at weaning on subsequent allocation of fat and protein to energy use. We fed seven pups for 5 days after weaning, to investigate the effect of increased fuel availability, and particularly protein, on fuel utilisation. After correcting for protein used during the moult, the proportional contribution of fat was 86–99% of total energy use. Pups with greater energy reserves, i.e. those that were heavier and fatter at weaning, had higher rates of fat and energy use. There was no significant relationship between adiposity at weaning and proportional contribution of fat to energy use, perhaps due to a limited sample size or range of body masses and adiposity. Supplemented individuals used energy, specifically fat, much faster and utilised proportionally less of their endogenous protein by departure than non-supplemented individuals. Fat metabolism contributed a similar percentage to daily energy use in both groups. These findings show that pups spare protein, even when energy use is dramatically increased. Pups that receive greater maternal provisioning and lay down more protein may have increased survival chances at sea. This study highlights the importance of protein reserves in first year survival of grey seal pups.