2 resultados para O19 - International Linkages to Development
em Abertay Research Collections - Abertay University’s repository
Resumo:
Currently academic researches' focus started changing towards protecting IP rights and to transferring them into industrial actors. Accordingly, it is argued that academic's basic research focus started shifting towards applied research as it is essential for the radical inventions to be introduced in a competitive market. This research seeks to understand industry-academia linkages in a high tech field such as nano-crystals. In regards to supporting the technology transfer process within or cross country, this study illustrates the technology development trends and actors' engagement; nano-crystals technology and their interconnections; and maps the organisational (industry-academia) linkages that enhance the commercialisation of radical inventions. The results show that the industry-academia linkages that appeared as decentralized structure are more stable compared to other linkage types. Korean and Japanese organisations present such stable linkages. The linkages are even stronger when they appear as a mono-linkage type. Chinese organisations show a great illustration of such an effective mono-linkage of co-inventorships in high tech research field. The organisations in the US maintain international linkages.
Resumo:
Whisky is a major global distilled spirit beverage. Whiskies are produced from cereal starches that are saccharified, fermented and distilled prior to spirit maturation. The strain of Saccharomyces cerevisiae employed in whisky fermentations is crucially important not only in terms of ethanol yields, but also for production of minor yeast metabolites which collectively contribute to development of spirit flavour and aroma characteristics. Distillers must therefore pay very careful attention to the strain of yeast exploited to ensure consistency of fermentation performance and spirit congener profiles. In the Scotch whisky industry, initiatives to address sustainability issues facing the industry (for example, reduced energy and water usage) have resulted in a growing awareness regarding criteria for selecting new distilling yeasts with improved efficiency. For example, there is now a desire for Scotch whisky distilling yeasts to perform under more challenging conditions such as high gravity wort fermentations. This article highlights the important roles of S. cerevisiae strains in whisky production and describes key fermentation performance attributes sought in distiller's yeast, such as high alcohol yields, stress tolerance and desirable congener profiles. We hope that the information herein will be useful for whisky producers and yeast suppliers in selecting new distilling strains of S. cerevisiae, and for the scientific community to stimulate further research in this area.