1 resultado para Multi-objective genetic algorithm
em Abertay Research Collections - Abertay University’s repository
Filtro por publicador
- Aberdeen University (2)
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (1)
- Academic Archive On-line (Jönköping University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (7)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Aquatic Commons (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (38)
- Biblioteca de Teses e Dissertações da USP (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (13)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (7)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (10)
- Boston University Digital Common (2)
- Brock University, Canada (12)
- Bulgarian Digital Mathematics Library at IMI-BAS (11)
- Cambridge University Engineering Department Publications Database (79)
- CentAUR: Central Archive University of Reading - UK (29)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (26)
- Cochin University of Science & Technology (CUSAT), India (13)
- Collection Of Biostatistics Research Archive (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- CUNY Academic Works (3)
- Dalarna University College Electronic Archive (5)
- Department of Computer Science E-Repository - King's College London, Strand, London (3)
- Digital Commons - Michigan Tech (5)
- Digital Commons at Florida International University (13)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (2)
- Greenwich Academic Literature Archive - UK (4)
- Helda - Digital Repository of University of Helsinki (2)
- Indian Institute of Science - Bangalore - Índia (84)
- Instituto Politécnico de Bragança (2)
- Instituto Politécnico do Porto, Portugal (14)
- Memorial University Research Repository (1)
- Nottingham eTheses (20)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (30)
- Queensland University of Technology - ePrints Archive (162)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositorio de la Universidad de Cuenca (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (2)
- Repositorio Institucional de la Universidad de Almería (1)
- Repositorio Institucional de la Universidad de Málaga (3)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (77)
- Repositorio Institucional Universidad de Medellín (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (10)
- Scielo Uruguai (1)
- Universidad de Alicante (9)
- Universidad Politécnica de Madrid (36)
- Universidade Complutense de Madrid (2)
- Universidade Federal do Pará (8)
- Universidade Federal do Rio Grande do Norte (UFRN) (13)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (1)
- Université de Montréal (1)
- Université de Montréal, Canada (5)
- Université Laval Mémoires et thèses électroniques (2)
- University of Queensland eSpace - Australia (20)
Resumo:
The role of renewable energy in power systems is becoming more significant due to the increasing cost of fossil fuels and climate change concerns. However, the inclusion of Renewable Energy Generators (REG), such as wind power, has created additional problems for power system operators due to the variability and lower predictability of output of most REGs, with the Economic Dispatch (ED) problem being particularly difficult to resolve. In previous papers we had reported on the inclusion of wind power in the ED calculations. The simulation had been performed using a system model with wind power as an intermittent source, and the results of the simulation have been compared to that of the Direct Search Method (DSM) for similar cases. In this paper we report on our continuing investigations into using Genetic Algorithms (GA) for ED for an independent power system with a significant amount of wind energy in its generator portfolio. The results demonstrate, in line with previous reports in the literature, the effectiveness of GA when measured against a benchmark technique such as DSM.