2 resultados para Model-Data Integration and Data Assimilation

em Abertay Research Collections - Abertay University’s repository


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Theoretical models of social learning predict that individuals can benefit from using strategies that specify when and whom to copy. Here the interaction of two social learning strategies, model age-based biased copying and copy when uncertain, was investigated. Uncertainty was created via a systematic manipulation of demonstration efficacy (completeness) and efficiency (causal relevance of some actions). The participants, 4- to 6-year-old children (N = 140), viewed both an adult model and a child model, each of whom used a different tool on a novel task. They did so in a complete condition, a near-complete condition, a partial demonstration condition, or a no-demonstration condition. Half of the demonstrations in each condition incorporated causally irrelevant actions by the models. Social transmission was assessed by first responses but also through children’s continued fidelity, the hallmark of social traditions. Results revealed a bias to copy the child model both on first response and in continued interactions. Demonstration efficacy and efficiency did not affect choice of model at first response but did influence solution exploration across trials, with demonstrations containing causally irrelevant actions decreasing exploration of alternative methods. These results imply that uncertain environments can result in canalized social learning from specific classes of mode

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mainstay of Big Data is prediction in that it allows practitioners, researchers, and policy analysts to predict trends based upon the analysis of large and varied sources of data. These can range from changing social and political opinions, patterns in crimes, and consumer behaviour. Big Data has therefore shifted the criterion of success in science from causal explanations to predictive modelling and simulation. The 19th-century science sought to capture phenomena and seek to show the appearance of it through causal mechanisms while 20th-century science attempted to save the appearance and relinquish causal explanations. Now 21st-century science in the form of Big Data is concerned with the prediction of appearances and nothing more. However, this pulls social science back in the direction of a more rule- or law-governed reality model of science and away from a consideration of the internal nature of rules in relation to various practices. In effect Big Data offers us no more than a world of surface appearance and in doing so it makes disappear any context-specific conceptual sensitivity.