2 resultados para Metabolite kinetics

em Abertay Research Collections - Abertay University’s repository


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phocid seals have been proposed as models for diabetes because they exhibit limited insulin response to glucose, high blood glucose and increasing insulin resistance when fasting. Liver glucose-6-phosphatase (G6Pase) catalyses the final step in glucose production and is central to glucose regulation in other animals. G6Pase comprises a translocase (SLC37A4) and a catalytic subunit (G6PC). G6PC and SLC37A4 expression and activity are normally regulated by nutritional state and glucostatic hormones, particularly insulin, and are elevated in diabetes. We tested the hypotheses that (1) grey seal G6PC and SLC37A4 cDNA and predicted protein sequences differ from other species’ at functional sites, (2) relative G6Pase protein abundances are lower during feeding than fasting and (3) relative G6Pase protein abundances are related to insulin, insulin receptor phosphorylation and key metabolite levels. We show that G6PC and partial SLC37A4 cDNA sequences encode proteins sharing 82–95 % identity with other mammals. Seal G6PC contained no differences in sites responsible for activity, stability or subcellular location. Several substitutions in seal SLC37A4 were predicted to be tolerated with low probability, which could affect glucose production. Suckling pups had higher relative abundance of both subunits than healthy, postweaned fasting pups. Furthermore, relative G6PC abundance was negatively related to glucose levels. These findings contrast markedly with the response of relative hepatic G6Pase abundance to feeding, fasting, insulin, insulin sensitivity and key metabolites in other animals, and highlight the need to understand the regulation of enzymes involved in glucose control in phocids if these animals are to be informative models of diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this research, in situ generated ozone exposure/wash cycles of 1, 3, and 5 min applied to shrimp samples either before (BIS) or during iced storage (DIS) has been used to study the lipid oxidation kinetics using the peroxide values (PV). The induction period (IP) as well as PV at end of the IP (PVIP) have been obtained. The rate constants (k) as well as half-lives (t1/2) of hydroperoxides formation for different oxidation stages were calculated. The results showed that both IP and PVIP were lower with BIS (IP between 4.35±0.09 and 5.08±0.23 days; PVIP between 2.92±0.06 and 3.40±0.18 mEq kg−1) compared with DIS (IP between 5.92±0.12 and 6.14±0.09 days; PVIP between 4.49±0.17 and 4.56±0.10 mEq kg−1). The k value for DIS seemed to be the greater compared to BIS. In addition, whilst decreases and increases in t1/2 were found at propagation, respectively, for BIS and DIS, decreases and increases were only found at the induction of oxidation stage(s) for BIS. Further, the PV of ozone-processed samples would fit first order lipid oxidation kinetics independent of duration of ozone exposures. For the first time, PV measurements and fundamental kinetic principles have been used to describe how increasing ozone exposures positively affects the different oxidation stages responsible for the formation of hydroperoxides in ozone-processed shrimp.