1 resultado para Learning to learn
em Abertay Research Collections - Abertay University’s repository
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (2)
- Aberdeen University (3)
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Archive On-line (Jönköping University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (33)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (6)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (8)
- Brock University, Canada (30)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CentAUR: Central Archive University of Reading - UK (59)
- Cochin University of Science & Technology (CUSAT), India (2)
- Coffee Science - Universidade Federal de Lavras (2)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (61)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (4)
- Dalarna University College Electronic Archive (21)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (12)
- Digital Peer Publishing (2)
- DigitalCommons@The Texas Medical Center (4)
- DigitalCommons@University of Nebraska - Lincoln (4)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (50)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (2)
- Georgian Library Association, Georgia (1)
- Glasgow Theses Service (4)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institute of Public Health in Ireland, Ireland (5)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (36)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (3)
- Massachusetts Institute of Technology (10)
- Ministerio de Cultura, Spain (22)
- National Center for Biotechnology Information - NCBI (4)
- Nottingham eTheses (2)
- Open Access Repository of Association for Learning Technology (ALT) (2)
- Open University Netherlands (1)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (5)
- Publishing Network for Geoscientific & Environmental Data (2)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (7)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (4)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Científico da Universidade de Évora - Portugal (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (18)
- Repositório da Produção Científica e Intelectual da Unicamp (4)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (5)
- Repositorio de la Universidad de Cuenca (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Digital da Universidade Municipal de São Caetano do Sul - USCS (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositorio Institucional de la Universidad de El Salvador (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (16)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (6)
- School of Medicine, Washington University, United States (2)
- Scielo Saúde Pública - SP (10)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (2)
- Universidad Autónoma de Nuevo León, Mexico (2)
- Universidad de Alicante (8)
- Universidad del Rosario, Colombia (6)
- Universidad Politécnica de Madrid (8)
- Universidade do Minho (19)
- Universidade dos Açores - Portugal (6)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universidade Metodista de São Paulo (3)
- Universitat de Girona, Spain (10)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (6)
- Université de Lausanne, Switzerland (44)
- Université de Montréal, Canada (31)
- University of Canberra Research Repository - Australia (1)
- University of Connecticut - USA (1)
- University of Michigan (28)
- University of Queensland eSpace - Australia (38)
- University of Southampton, United Kingdom (6)
- University of Washington (7)
- WestminsterResearch - UK (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (5)
Resumo:
Developers strive to create innovative Artificial Intelligence (AI) behaviour in their games as a key selling point. Machine Learning is an area of AI that looks at how applications and agents can be programmed to learn their own behaviour without the need to manually design and implement each aspect of it. Machine learning methods have been utilised infrequently within games and are usually trained to learn offline before the game is released to the players. In order to investigate new ways AI could be applied innovatively to games it is wise to explore how machine learning methods could be utilised in real-time as the game is played, so as to allow AI agents to learn directly from the player or their environment. Two machine learning methods were implemented into a simple 2D Fighter test game to allow the agents to fully showcase their learned behaviour as the game is played. The methods chosen were: Q-Learning and an NGram based system. It was found that N-Grams and QLearning could significantly benefit game developers as they facilitate fast, realistic learning at run-time.