3 resultados para Individual differences in children.

em Abertay Research Collections - Abertay University’s repository


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Second language (L2) learning outcomes may depend on the structure of the input and learners’ cognitive abilities. This study tested whether less predictable input might facilitate learning and generalization of L2 morphology while evaluating contributions of statistical learning ability, nonverbal intelligence, phonological short-term memory, and verbal working memory. Over three sessions, 54 adults were exposed to a Russian case-marking paradigm with a balanced or skewed item distribution in the input. Whereas statistical learning ability and nonverbal intelligence predicted learning of trained items, only nonverbal intelligence also predicted generalization of case-marking inflections to new vocabulary. Neither measure of temporary storage capacity predicted learning. Balanced, less predictable input was associated with higher accuracy in generalization but only in the initial test session. These results suggest that individual differences in pattern extraction play a more sustained role in L2 acquisition than instructional manipulations that vary the predictability of lexical items in the input.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comparative and evolutionary developmental analyses seek to discover the similarities and differences between humans and non-human species that illuminate both the evolutionary foundations of our nature that we share with other animals, and the distinctive characteristics that make human development unique. As our closest animal relatives, with whom we last shared common ancestry, non-human primates have beenparticularly important in this endeavour. Such studies that have focused on social learning, traditions, and culture have discovered much about the ‘how’ of social learning, concerned with key underlying processes such as imitation and emulation. One of the core discoveries is that the adaptive adjustment of social learning options to different contexts is not unique to human infants, therefore multiple new strands of research have begun to focus on more subtle questions about when, from whom, and why such learning occurs. Here we review illustrative studies on both human infants and young children and on non-human primates to identify the similarities shared more broadly across the primate order, and the apparent specialisms that distinguish human development. Adaptive biases in social learning discussed include those modulated by task comprehension, experience, conformity to majorities, and the age, skill, proficiency and familiarity of potential alternative cultural models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional methods for phenotyping skeletal muscle (e.g., immunohistochemistry) are labor-intensive and ill-suited to multixplex analysis, i.e., assays must be performed in a series. Addressing these concerns represents a largely unmet research need but more comprehensive parallel analysis of myofibrillar proteins could advance knowledge regarding age- and activity-dependent changes in human muscle. We report a label-free, semi-automated and time efficient LC-MS proteomic workflow for phenotyping the myofibrillar proteome. Application of this workflow in old and young as well as trained and untrained human skeletal muscle yielded several novel observations that were subsequently verified by multiple reaction monitoring (MRM).We report novel data demonstrating that human ageing is associated with lesser myosin light chain 1 content and greater myosin light chain 3 content, consistent with an age-related reduction in type II muscle fibers. We also disambiguate conflicting data regarding myosin regulatory light chain, revealing that age-related changes in this protein more closely reflect physical activity status than ageing per se. This finding reinforces the need to control for physical activity levels when investigating the natural process of ageing. Taken together, our data confirm and extend knowledge regarding age- and activity-related phenotypes. In addition, the MRM transitions described here provide a methodological platform that can be fine-tuned to suite multiple research needs and thus advance myofibrillar phenotyping.