6 resultados para Haarer, John, b. 1840

em Abertay Research Collections - Abertay University’s repository


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of process variables (pea starch, guar gum and glycerol) on the viscosity (V), solubility (SOL), moisture content (MC), transparency (TR), Hunter parameters (L, a, and b), total color difference (ΔE), yellowness index (YI), and whiteness index (WI) of the pea starch based edible films was studied using three factors with three level Box–Behnken response surface design. The individual linear effect of pea starch, guar and glycerol was significant (p < 0.05) on all the responses. However, a value was only significantly (p < 0.05) affected by pea starch and guar gum in a positive and negative linear term, respectively. The effect of interaction of starch × glycerol was also significant (p < 0.05) on TR of edible films. Interaction between independent variables starch × guar gum had a significant impact on the b and YI values. The quadratic regression coefficient of pea starch showed a significant effect (p < 0.05) on V, MC, L, b, ΔE, YI, and WI; glycerol level on ΔE and WI; and guar gum on ΔE and SOL value. The results were analyzed by Pareto analysis of variance (ANOVA) and the second order polynomial models were developed from the experimental design with reliable and satisfactory fit with the corresponding experimental data and high coefficient of determination (R2) values (>0.93). Three-dimensional response surface plots were established to investigate the relationship between process variables and the responses. The optimized conditions with the goal of maximizing TR and minimizing SOL, YI and MC were 2.5 g pea starch, 25% glycerol and 0.3 g guar gum. Results revealed that pea starch/guar gum edible films with appropriate physical and optical characteristics can be effectively produced and successfully applied in the food packaging industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to optimize the aqueous extraction conditions for the recovery of phenolic compounds and antioxidant capacity of lemon pomace using response surface methodology. An experiment based on Box–Behnken design was conducted to analyse the effects of temperature, time and sample-to-water ratio on the extraction of total phenolic compounds, total flavonoids, proanthocyanidins and antioxidant capacity. Sample-to-solvent ratio had a negative effect on all the dependent variables, while extraction temperature and time had a positive effect only on TPC yields and ABTS antioxidant capacity. The optimal extraction conditions were 95 oC, 15 min, and a sample-to-solvent ratio of 1:100 g/ml. Under these conditions, the aqueous extracts had the same content of TPC and TF as well as antioxidant capacity in comparison with those of methanol extracts obtained by sonication. Therefore these conditions could be applied for further extraction and isolation of phenolic compounds from lemon pomace.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Sweet cherries (Prunus avium L.) are a nutritious fruit which are rich in polyphenols and have high antioxidant potential. Most sweet cherries are consumed fresh and a small proportion of the total sweet cherries production is value added to make processed food products. Sweet cherries are highly perishable fruit with a short harvest season, therefore extensive preservation and processing methods have been developed for the extension of their shelf-life and distribution of their products. Scope and Approach In this review, the main physicochemical properties of sweet cherries, as well as bioactive components and their determination methods are described. The study emphasises the recent progress of postharvest technology, such as controlled/modified atmosphere storage, edible coatings, irradiation, and biological control agents, to maintain sweet cherries for the fresh market. Valorisations of second-grade sweet cherries, as well as trends for the diversification of cherry products for future studies are also discussed. Key Findings and Conclusions Sweet cherry fruit have a short harvest period and marketing window. The major loss in quality after harvest include moisture loss, softening, decay and stem browning. Without compromising their eating quality, the extension in fruit quality and shelf-life for sweet cherries is feasible by means of combination of good handling practice and applications of appropriate postharvest technology. With the drive of health-food sector, the potential of using second class cherries including cherry stems as a source of bioactive compound extraction is high, as cherry fruit is well-known for being rich in health-promoting components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The individual and interactive impacts of guar gum and glycerol on the pea starch-based edible film characteristics were examined using three factors with three level Box–Behnken response surface design. The results showed that density and elongation at break were only significantly (p < 0.05) affected by pea starch and guar gum in a positive linear fashion. The quadratic regression coefficient of pea starch showed a significant effect (p < 0.05) on thickness, density, puncture force, water vapour permeability, and tensile strength. While tensile strength and Young modulus affected by the quadratic regression coefficient of glycerol and guar gum, respectively. The results were analysed using Pareto analysis of variance (ANOVA) and the developed predictive equations for each response variable presented reliable and satisfactory fit with high coefficient of determination (R2) values (≥ 0.96). The optimized conditions with the goal of maximizing mechanical properties and minimizing water vapour permeability were 2.5 g pea starch, 0.3 g guar gum and 25 % (w/w) glycerol based on the dry film matter in 100 ml of distilled water. Generally, changes in the concentrations of pea starch, guar gum and glycerol resulted in changes in the functional properties of film.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several studies have shown that UV-C irradiation promotes the bioactive compounds and antioxidants of fresh fruits and vegetables. The aim of this study was to apply UV irradiation in lemon pomace dried powder for enhancing its phenolic content and antioxidant properties, thus more bioactive compounds should be available for extraction and utilization. Lemon pomace dried powder was placed above the UV lamp and treated with dosages of 4, 19, 80 and 185 kJ m-2, while untreated powder was used as a control. UV-C irradiation significantly affected the total phenolic content, total flavonoid content, proanthocyanidins and antioxidant capacity measured by CUPRAC and FRAP of the lemon pomace dried powder, while it did not affect the vitamin C content. UV-C irradiation of 19 kJ m-2 resulted in 19% higher total phenolic content than the control, while UV-C irradiation of 180 kJ m-2 resulted in 28% higher total flavonoid content than the control. The antioxidant capacity was reduced when UV-C irradiation more than 4 kJ m-2 was applied. The results of this study indicate that UV-C treatment has the potential to increase the extraction of bioactive compounds of lemon dried pomace at relatively high dosages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of microwave pre-treatment on the levels of total phenolic compounds, flavonoids, proanthocyanidins and individual major compounds as well as the total antioxidant activity of the dried lemon pomace was investigated. The results showed that microwave pre-treatment significantly affected all the examined parameters. The total phenolic content, total flavonoids, proanthocyanidins, as well as the total antioxidant activity significantly increased as the microwave radiation time and power increased (e.g., 2.5 folds for phenolics, 1.4 folds for flavonoids and 5.5 folds for proanthocyanidins), however irradiation more than 480 W for 5 min resulted in the decrease of these parameters. These findings indicate that microwave irradiation time and power may enhance higher levels of the phenolic compounds as well as the antioxidant capacity of the dried lemon pomace powder. However, higher and longer irradiation may lead to a degradation of phenolic compounds and lower the antioxidant capacity of the dried lemon pomace.