1 resultado para Forest fragment
em Abertay Research Collections - Abertay University’s repository
Resumo:
How rainfall infiltration rate and soil hydrological characteristics develop over time under forests of different ages in temperate regions is poorly understood. In this study, infiltration rate and soil hydrological characteristics were investigated under forests of different ages and under grassland. Soil hydraulic characteristics were measured at different scales under a 250 year old grazed grassland (GL), a six (6 yr) and 48 (48 yr) year old Scots pine (Pinus sylvestris) plantation, remnant 300 year old individual Scots pines (OT) and a 4000 year old Caledonian Forest (AF). In-situ field saturated hydraulic conductivity (Kfs) was measured and visible root:soil area was estimated from soil pits. Macroporosity, pore structure, and macropore connectivity were estimated from X-ray tomography of soil cores, and from water-release characteristics. At all scales the median values for Kfs, root fraction, macro-porosity and connectivity values tended to AF > OT > 48 yr > GL > 6 yr, indicating that infiltration rates and water storage increased with forest age. The remnant Caledonian Forest had a huge range of Kfs (12 to > 4922 mm h-1), with maximum Kfs values 7 to 15 times larger than 48-year-old Scots pine plantation, suggesting that undisturbed old forests, with high rainfall and minimal evapotranspiration in winter, may act as important areas for water storage and sinks for storm rainfall to infiltrate and transport to deeper soil layers via preferential flow. The importance of the development of soil hydrological characteristics under different aged forests is discussed.