2 resultados para EXHAUSTION

em Abertay Research Collections - Abertay University’s repository


Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been established that Wingate-based high-intensity training (HIT) consisting of 4 to 6 x 30-s all-out sprints interspersed with 4-min recovery is an effective training paradigm. Despite the increased utilisation of Wingate-based HIT to bring about training adaptations, the majority of previous studies have been conducted over a relatively short timeframe (2 to 6 weeks). However, activity during recovery period, intervention duration or sprint length have been overlooked. In study 1, the dose response of recovery intensity on performance during typical Wingate-based HIT (4 x 30-s cycle all-out sprints separated by 4-min recovery) was examined and active recovery (cycling at 20 to 40% of V̇O2peak) has been shown to improve sprint performance with successive sprints by 6 to 12% compared to passive recovery (remained still), while increasing aerobic contribution to sprint performance by ~15%. In the following study, 5 to 7% greater endurance performance adaptations were achieved with active recovery (40%V̇O2peak) following 2 weeks of Wingate-based HIT. In the final study, shorter sprint protocol (4 to 6 x 15-s sprints interspersed with 2 min of recovery) has been shown to be as effective as typical 30-s Wingate-based HIT in improving cardiorespiratory function and endurance performance over 9 weeks with the improvements in V̇O2peak being completed within 3 weeks, whereas exercise capacity (time to exhaustion) being increased throughout 9 weeks. In conclusion, the studies demonstrate that active recovery at 40% V̇O2peak significantly enhances endurance adaptations to HIT. Further, the duration of the sprint does not seem to be a driving factor in the magnitude of change with 15 sec sprints providing similar adaptations to 30 sec sprints. Taken together, this suggests that the arrangement of recovery mode should be considered to ensure maximal adaptation to HIT, and the practicality of the training would be enhanced via the reduction in sprint duration without diminishing overall training adaptations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose The aim of this study was to test the effects of sprint interval training (SIT) on cardiorespiratory fitness and aerobic performance measures in young females. Methods Eight healthy, untrained females (age 21 ± 1 years; height 165 ± 5 cm; body mass 63 ± 6 kg) completed cycling peak oxygen uptake ( V˙O2V˙O2 peak), 10-km cycling time trial (TT) and critical power (CP) tests pre- and post-SIT. SIT protocol included 4 × 30-s “all-out” cycling efforts against 7 % body mass interspersed with 4 min of active recovery performed twice per week for 4 weeks (eight sessions in total). Results There was no significant difference in V˙O2V˙O2 peak following SIT compared to the control period (control period: 31.7 ± 3.0 ml kg−1 min−1; post-SIT: 30.9 ± 4.5 ml kg−1 min−1; p > 0.05), but SIT significantly improved time to exhaustion (TTE) (control period: 710 ± 101 s; post-SIT: 798 ± 127 s; p = 0.00), 10-km cycling TT (control period: 1055 ± 129 s; post-SIT: 997 ± 110 s; p = 0.004) and CP (control period: 1.8 ± 0.3 W kg−1; post-SIT: 2.3 ± 0.6 W kg−1; p = 0.01). Conclusions These results demonstrate that young untrained females are responsive to SIT as measured by TTE, 10-km cycling TT and CP tests. However, eight sessions of SIT over 4 weeks are not enough to provide sufficient training stimulus to increase V˙O2V˙O2 peak.