2 resultados para Dwarf Galaxy Fornax Distribution Function Action Based
em Abertay Research Collections - Abertay University’s repository
Resumo:
Context. Recent observations of brown dwarf spectroscopic variability in the infrared infer the presence of patchy cloud cover. Aims. This paper proposes a mechanism for producing inhomogeneous cloud coverage due to the depletion of cloud particles through the Coulomb explosion of dust in atmospheric plasma regions. Charged dust grains Coulomb-explode when the electrostatic stress of the grain exceeds its mechanical tensile stress, which results in grains below a critical radius a < a Coul crit being broken up. Methods. This work outlines the criteria required for the Coulomb explosion of dust clouds in substellar atmospheres, the effect on the dust particle size distribution function, and the resulting radiative properties of the atmospheric regions. Results. Our results show that for an atmospheric plasma region with an electron temperature of Te = 10 eV (≈105 K), the critical grain radius varies from 10−7 to 10−4 cm, depending on the grains’ tensile strength. Higher critical radii up to 10−3 cm are attainable for higher electron temperatures. We find that the process produces a bimodal particle size distribution composed of stable nanoscale seed particles and dust particles with a ≥ a Coul crit , with the intervening particle sizes defining a region devoid of dust. As a result, the dust population is depleted, and the clouds become optically thin in the wavelength range 0.1–10 μm, with a characteristic peak that shifts to higher wavelengths as more sub-micrometer particles are destroyed. Conclusions. In an atmosphere populated with a distribution of plasma volumes, this will yield regions of contrasting radiative properties, thereby giving a source of inhomogeneous cloud coverage. The results presented here may also be relevant for dust in supernova remnants and protoplanetary disks.
Computer-based tools for assessing micro-longitudinal patterns of cognitive function in older adults
Resumo:
Patterns of cognitive change over micro-longitudinal timescales (i.e., ranging from hours to days) are associated with a wide range of age-related health and functional outcomes. However, practical issues with conducting high-frequency assessments make investigations of micro-longitudinal cognition costly and burdensome to run. One way of addressing this is to develop cognitive assessments that can be performed by older adults, in their own homes, without a researcher being present. Here, we address the question of whether reliable and valid cognitive data can be collected over micro-longitudinal timescales using unsupervised cognitive tests.In study 1, 48 older adults completed two touchscreen cognitive tests, on three occasions, in controlled conditions, alongside a battery of standard tests of cognitive functions. In study 2, 40 older adults completed the same two computerized tasks on multiple occasions, over three separate week-long periods, in their own homes, without a researcher present. Here, the tasks were incorporated into a wider touchscreen system (Novel Assessment of Nutrition and Ageing (NANA)) developed to assess multiple domains of health and behavior. Standard tests of cognitive function were also administered prior to participants using the NANA system.Performance on the two “NANA” cognitive tasks showed convergent validity with, and similar levels of reliability to, the standard cognitive battery in both studies. Completion and accuracy rates were also very high. These results show that reliable and valid cognitive data can be collected from older adults using unsupervised computerized tests, thus affording new opportunities for the investigation of cognitive function.