2 resultados para Digestion

em Abertay Research Collections - Abertay University’s repository


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates factors affecting anaerobic degradation of marine macro-algae (or seaweed), when used as a co-substrate with terrestrial plant biomass for the production of biogas. Using Laminaria digitata, a brown marine seaweed species and green peas, results showed that when only 2% of feedstock of a reactor treating the green peas at an organic loading rate (OLR) of 2.67 kg VS.m3.day-1 was replaced with the seaweed, methane production was disrupted, whilst acidogenesis, seemed to be less adversely affected, resulting in excessive volatile acids accumulation. Reactor stability was difficult to achieve thereafter. The experiment was repeated with a lower initial OLR of green peas of 0.70 kg VS.m3.day-1 before the addition of the seaweed. Although similar symptoms as in first trial were observed, process stability was restored through the control of OLR and alkalinity. These measures led to an increase in overall OLR of 1.25 kg VS.m3.day-1 comprising of 35% seaweed. This study has shown that certain seaweed constituents are more inhibitory to the methanogens even at trace concentrations than to the other anaerobic digestion microbial groups. Appropriate adaptation strategy, involving initial low proportion of the seaweed relative to the total OLR, and overall low OLR, is necessary to ensure effective adaptation of the microorganisms to the inhibitory constituents of seaweed. Where there is seasonal availability of seaweed, the results of this study suggest that a fresh adaptation or start-up strategy must be implemented during each cycle of seaweed availability in order to ensure sustainable process stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon capture and storage (CCS) in the oil and water industries is becoming common and a significant consumer of energy typically requiring 150–450 °C and or several hundred bar pressure [1] particularly in geological deposition. A biological carbon capture and conversion has been considered in conventional anaerobic digestion processes. The process has been utilised in biological mixed culture, where acetoclastic bacteria and hydrogenophilic methanogens play a major key role in the utilisation of carbon dioxide. However, the bio catalytic microorganisms, hydrogenophilic methanogens are reported to be unstable with acetoclastic bacteria. In this work the biochemical thermodynamic efficiency was investigated for the stabilisation of the microbial process in carbon capture and utilisation. The authors observed that a thermodynamic efficiency of biological carbon capture and utilisation (BCCU) had 32% of overall reduction in yield of carbon dioxide with complimentary increase of 30% in yield of methane, while the process was overall endothermic. Total consumption of energy (≈0.33 MJ l−1) was estimated for the carbonate solubility (0.1 mol l−1) in batched BCCU. This has a major influence on microbial composition in the bioreactor. This thermodynamic study is an essential tool to aid the understanding of the interactions between operating parameters and the mixed microbial culture.