3 resultados para Council of Basel (1431-1449 : Basel, Switzerland)

em Abertay Research Collections - Abertay University’s repository


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several studies have shown that UV-C irradiation promotes the bioactive compounds and antioxidants of fresh fruits and vegetables. The aim of this study was to apply UV irradiation in lemon pomace dried powder for enhancing its phenolic content and antioxidant properties, thus more bioactive compounds should be available for extraction and utilization. Lemon pomace dried powder was placed above the UV lamp and treated with dosages of 4, 19, 80 and 185 kJ m-2, while untreated powder was used as a control. UV-C irradiation significantly affected the total phenolic content, total flavonoid content, proanthocyanidins and antioxidant capacity measured by CUPRAC and FRAP of the lemon pomace dried powder, while it did not affect the vitamin C content. UV-C irradiation of 19 kJ m-2 resulted in 19% higher total phenolic content than the control, while UV-C irradiation of 180 kJ m-2 resulted in 28% higher total flavonoid content than the control. The antioxidant capacity was reduced when UV-C irradiation more than 4 kJ m-2 was applied. The results of this study indicate that UV-C treatment has the potential to increase the extraction of bioactive compounds of lemon dried pomace at relatively high dosages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract: Alcoholic beverages are produced following the fermentation of sugars by yeasts, mainly (but not exclusively) strains of the species, Saccharomyces cerevisiae. The sugary starting materials may emanate from cereal starches (which require enzymatic pre‐hydrolysis) in the case of beers and whiskies, sucrose‐rich plants (molasses or sugar juice from sugarcane) in the case of rums, or from fruits (which do not require pre‐hydrolysis) in the case of wines and brandies. In the presence of sugars, together with other essential nutrients such as amino acids, minerals and vitamins, S. cerevisiae will conduct fermentative metabolism to ethanol and carbon dioxide (as the primary fermentation metabolites) as the cells strive to make energy and regenerate the coenzyme NAD+ under anaerobic conditions. Yeasts will also produce numerous secondary metabolites which act as important beverage flavour congeners, including higher alcohols, esters, carbonyls and sulphur compounds. These are very important in dictating the final flavour and aroma characteristics of beverages such as beer and wine, but also in distilled beverages such as whisky, rum and brandy. Therefore, yeasts are of vital importance in providing the alcohol content and the sensory profiles of beverages. This Introductory Chapter reviews, in general, the growth, physiology and metabolism of S. cerevisiae in alcoholic beverage fermentations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Whisky is a major global distilled spirit beverage. Whiskies are produced from cereal starches that are saccharified, fermented and distilled prior to spirit maturation. The strain of Saccharomyces cerevisiae employed in whisky fermentations is crucially important not only in terms of ethanol yields, but also for production of minor yeast metabolites which collectively contribute to development of spirit flavour and aroma characteristics. Distillers must therefore pay very careful attention to the strain of yeast exploited to ensure consistency of fermentation performance and spirit congener profiles. In the Scotch whisky industry, initiatives to address sustainability issues facing the industry (for example, reduced energy and water usage) have resulted in a growing awareness regarding criteria for selecting new distilling yeasts with improved efficiency. For example, there is now a desire for Scotch whisky distilling yeasts to perform under more challenging conditions such as high gravity wort fermentations. This article highlights the important roles of S. cerevisiae strains in whisky production and describes key fermentation performance attributes sought in distiller's yeast, such as high alcohol yields, stress tolerance and desirable congener profiles. We hope that the information herein will be useful for whisky producers and yeast suppliers in selecting new distilling strains of S. cerevisiae, and for the scientific community to stimulate further research in this area.