4 resultados para Contractors Selection and appointment

em Abertay Research Collections - Abertay University’s repository


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current Ambient Intelligence and Intelligent Environment research focuses on the interpretation of a subject’s behaviour at the activity level by logging the Activity of Daily Living (ADL) such as eating, cooking, etc. In general, the sensors employed (e.g. PIR sensors, contact sensors) provide low resolution information. Meanwhile, the expansion of ubiquitous computing allows researchers to gather additional information from different types of sensor which is possible to improve activity analysis. Based on the previous research about sitting posture detection, this research attempts to further analyses human sitting activity. The aim of this research is to use non-intrusive low cost pressure sensor embedded chair system to recognize a subject’s activity by using their detected postures. There are three steps for this research, the first step is to find a hardware solution for low cost sitting posture detection, second step is to find a suitable strategy of sitting posture detection and the last step is to correlate the time-ordered sitting posture sequences with sitting activity. The author initiated a prototype type of sensing system called IntelliChair for sitting posture detection. Two experiments are proceeded in order to determine the hardware architecture of IntelliChair system. The prototype looks at the sensor selection and integration of various sensor and indicates the best for a low cost, non-intrusive system. Subsequently, this research implements signal process theory to explore the frequency feature of sitting posture, for the purpose of determining a suitable sampling rate for IntelliChair system. For second and third step, ten subjects are recruited for the sitting posture data and sitting activity data collection. The former dataset is collected byasking subjects to perform certain pre-defined sitting postures on IntelliChair and it is used for posture recognition experiment. The latter dataset is collected by asking the subjects to perform their normal sitting activity routine on IntelliChair for four hours, and the dataset is used for activity modelling and recognition experiment. For the posture recognition experiment, two Support Vector Machine (SVM) based classifiers are trained (one for spine postures and the other one for leg postures), and their performance evaluated. Hidden Markov Model is utilized for sitting activity modelling and recognition in order to establish the selected sitting activities from sitting posture sequences.2. After experimenting with possible sensors, Force Sensing Resistor (FSR) is selected as the pressure sensing unit for IntelliChair. Eight FSRs are mounted on the seat and back of a chair to gather haptic (i.e., touch-based) posture information. Furthermore, the research explores the possibility of using alternative non-intrusive sensing technology (i.e. vision based Kinect Sensor from Microsoft) and find out the Kinect sensor is not reliable for sitting posture detection due to the joint drifting problem. A suitable sampling rate for IntelliChair is determined according to the experiment result which is 6 Hz. The posture classification performance shows that the SVM based classifier is robust to “familiar” subject data (accuracy is 99.8% with spine postures and 99.9% with leg postures). When dealing with “unfamiliar” subject data, the accuracy is 80.7% for spine posture classification and 42.3% for leg posture classification. The result of activity recognition achieves 41.27% accuracy among four selected activities (i.e. relax, play game, working with PC and watching video). The result of this thesis shows that different individual body characteristics and sitting habits influence both sitting posture and sitting activity recognition. In this case, it suggests that IntelliChair is suitable for individual usage but a training stage is required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose – The purpose of this paper is to survey various meanings attached to a public-private partnership (PPP) and related aspects in Western literature, and identify commonalities and differences between them. Additionally, the article intends to critically assess conflicting and overlapping views on contractual and institutional PPPs, their forms and models, and draw insights for transitional economies. Design/methodology/approach – The article contrasts and compares views on PPP meanings, forms and models within Western PPP literature, and also draws comparisons with understanding of partnership aspects in the Russian language sources. The paper examines theories underpinning PPPs, builds connections to PPP advantages and drawbacks, and provides critical assessment of net benefits that PPPs may bring along to the society. Findings – The article concludes that future PPP research in transitional countries such as Kazakhstan and Russia, particularly in the area of organisational and power arrangements in partnerships, may delineate new concepts such as government as a guarantor of a PPP project, social significance of a PPP project, and risk management in a country’s contextual environment. Practical implications – In transitional countries, in which PPPs are in their infancy, clarification of theoretical positions, and identification of commonalities and differences between meanings attached to the PPP terminology may enable better decisions by researchers and practitioners in their selection and further development of partnerships and related concepts. Originality/value – Research in the field of PPPs in transitional countries such as Russia and Kazakhstan is in its infancy. The paper intends to contribute to the body of knowledge about PPPs by providing detailed account and categorisation of their principal meanings, forms, models, underpinning theories, and drawing insights for future research in transitional countries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last thirty years, the emergence and progression of biologging technology has led to great advances in marine predator ecology. Large databases of location and dive observations from biologging devices have been compiled for an increasing number of diving predator species (such as pinnipeds, sea turtles, seabirds and cetaceans), enabling complex questions about animal activity budgets and habitat use to be addressed. Central to answering these questions is our ability to correctly identify and quantify the frequency of essential behaviours, such as foraging. Despite technological advances that have increased the quality and resolution of location and dive data, accurately interpreting behaviour from such data remains a challenge, and analytical methods are only beginning to unlock the full potential of existing datasets. This review evaluates both traditional and emerging methods and presents a starting platform of options for future studies of marine predator foraging ecology, particularly from location and two-dimensional (time-depth) dive data. We outline the different devices and data types available, discuss the limitations and advantages of commonly-used analytical techniques, and highlight key areas for future research. We focus our review on pinnipeds - one of the most studied taxa of marine predators - but offer insights that will be applicable to other air-breathing marine predator tracking studies. We highlight that traditionally-used methods for inferring foraging from location and dive data, such as first-passage time and dive shape analysis, have important caveats and limitations depending on the nature of the data and the research question. We suggest that more holistic statistical techniques, such as state-space models, which can synthesise multiple track, dive and environmental metrics whilst simultaneously accounting for measurement error, offer more robust alternatives. Finally, we identify a need for more research to elucidate the role of physical oceanography, device effects, study animal selection, and developmental stages in predator behaviour and data interpretation.