2 resultados para CONSTRAINED OPTIMIZATION
em Abertay Research Collections - Abertay University’s repository
Resumo:
Gait patterns have been widely studied in different fields of science for their particular characteristics. A dynamic approach of human locomotion considers walking and running as two stable behaviors adopted spontaneously under certain levels and natures of constraints. When no constraints are imposed, people naturally prefer to walk at the typical speed (i.e., around 4.5 km.h-1) that minimizes metabolic energy cost. The preferred walking speed (PWS) is also known to be an indicator of mobility and an important clinical factor in tracking impairements in motor behaviors. When constrained to move at higher speeds (e.g., being late), people naturally switch their preference to running for similar optimization reasons (e.g., physiological, biomechanical, perceptual, attentionnal costs). Indeed, the preferred transition speed (PTS) marks the natural seperation between walking and running and consistently falls within a speed range around 7.5 km.h-1. This chapter describes the constraint-dependant spontaneous organisation of the locomotor system, specifically on the walk-to-run speed continuum. We provide examples of the possibility of long-term adaptations of preferred behaviors to specific constraints such as factors related to traditional clothing or practice. We use knowledge from studies on preferred behaviors and on the relationship between affect and exercise adherence as a backdrop to prescribing a walk exercise program with an emphasis on populations with overweight or obesity.
Resumo:
The influence of process variables (pea starch, guar gum and glycerol) on the viscosity (V), solubility (SOL), moisture content (MC), transparency (TR), Hunter parameters (L, a, and b), total color difference (ΔE), yellowness index (YI), and whiteness index (WI) of the pea starch based edible films was studied using three factors with three level Box–Behnken response surface design. The individual linear effect of pea starch, guar and glycerol was significant (p < 0.05) on all the responses. However, a value was only significantly (p < 0.05) affected by pea starch and guar gum in a positive and negative linear term, respectively. The effect of interaction of starch × glycerol was also significant (p < 0.05) on TR of edible films. Interaction between independent variables starch × guar gum had a significant impact on the b and YI values. The quadratic regression coefficient of pea starch showed a significant effect (p < 0.05) on V, MC, L, b, ΔE, YI, and WI; glycerol level on ΔE and WI; and guar gum on ΔE and SOL value. The results were analyzed by Pareto analysis of variance (ANOVA) and the second order polynomial models were developed from the experimental design with reliable and satisfactory fit with the corresponding experimental data and high coefficient of determination (R2) values (>0.93). Three-dimensional response surface plots were established to investigate the relationship between process variables and the responses. The optimized conditions with the goal of maximizing TR and minimizing SOL, YI and MC were 2.5 g pea starch, 25% glycerol and 0.3 g guar gum. Results revealed that pea starch/guar gum edible films with appropriate physical and optical characteristics can be effectively produced and successfully applied in the food packaging industry.