4 resultados para COMPARATIVE PHYSIOLOGY

em Abertay Research Collections - Abertay University’s repository


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Leptin is a multifunctional hormone, produced predominantly in adipocytes. It regulates energy balance through its impact on appetite and fat metabolism, and its concentration indicates the size of body fat reserves. Leptin also plays a vital role in stretch-induced surfactant production during alveolar development in the fetus. The structure, expression pattern, and role of leptin have not previously been explored in marine mammals. Phocid seals undergo cyclical changes in body composition as a result of prolonged fasting and intensive foraging bouts and experience rapid, dramatic, and repeated changes in lung volume during diving. Here, we report the tissue-specific expression pattern of leptin in these animals. This is the first demonstration of leptin expression in the lung tissue of a mature mammal, in addition to its expression in the blubber and bone marrow, in common with other animals. We propose a role for leptin in seal pulmonary surfactant production, in addition to its likely role in long-term energy balance. We identify substitutions in the phocine leptin sequence in regions normally highly conserved between widely distinct vertebrate groups, and, using a purified seal leptin antiserum, we confirm the presence of the leptin protein in gray seal lung and serum fractions. Finally, we report the substantial inadequacies of using heterologous antibodies to measure leptin in unextracted gray seal serum.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phocid seals have been proposed as models for diabetes because they exhibit limited insulin response to glucose, high blood glucose and increasing insulin resistance when fasting. Liver glucose-6-phosphatase (G6Pase) catalyses the final step in glucose production and is central to glucose regulation in other animals. G6Pase comprises a translocase (SLC37A4) and a catalytic subunit (G6PC). G6PC and SLC37A4 expression and activity are normally regulated by nutritional state and glucostatic hormones, particularly insulin, and are elevated in diabetes. We tested the hypotheses that (1) grey seal G6PC and SLC37A4 cDNA and predicted protein sequences differ from other species’ at functional sites, (2) relative G6Pase protein abundances are lower during feeding than fasting and (3) relative G6Pase protein abundances are related to insulin, insulin receptor phosphorylation and key metabolite levels. We show that G6PC and partial SLC37A4 cDNA sequences encode proteins sharing 82–95 % identity with other mammals. Seal G6PC contained no differences in sites responsible for activity, stability or subcellular location. Several substitutions in seal SLC37A4 were predicted to be tolerated with low probability, which could affect glucose production. Suckling pups had higher relative abundance of both subunits than healthy, postweaned fasting pups. Furthermore, relative G6PC abundance was negatively related to glucose levels. These findings contrast markedly with the response of relative hepatic G6Pase abundance to feeding, fasting, insulin, insulin sensitivity and key metabolites in other animals, and highlight the need to understand the regulation of enzymes involved in glucose control in phocids if these animals are to be informative models of diabetes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The cytokine hormone leptin is a key signalling molecule in many pathways that control physiological functions. Although leptin demonstrates structural conservation in mammals, there is evidence of positive selection in primates, lagomorphs and chiropterans. We previously reported that the leptin genes of the grey and harbour seals (phocids) have significantly diverged from other mammals. Therefore we further investigated the diversification of leptin in phocids, other marine mammals and terrestrial taxa by sequencing the leptin genes of representative species. Phylogenetic reconstruction revealed that leptin diversification was pronounced within the phocid seals with a high dN/dS ratio of 2.8, indicating positive selection. We found significant evidence of positive selection along the branch leading to the phocids, within the phocid clade, but not over the dataset as a whole. Structural predictions indicate that the individual residues under selection are away from the leptin receptor (LEPR) binding site. Predictions of the surface electrostatic potential indicate that phocid seal leptin is notably different to other mammalian leptins, including the otariids. Cloning the grey seal leptin binding domain of LEPR confirmed that this was structurally conserved. These data, viewed in toto, support a hypothesis that phocid leptin divergence is unlikely to have arisen by random mutation. Based upon these phylogenetic and structural assessments, and considering the comparative physiology and varying life histories among species, we postulate that the unique phocid diving behaviour has produced this selection pressure. The Phocidae includes some of the deepest diving species, yet have the least modified lung structure to cope with pressure and volume changes experienced at depth. Therefore, greater surfactant production is required to facilitate rapid lung re-inflation upon surfacing, while maintaining patent airways. We suggest that this additional surfactant requirement is met by the leptin pulmonary surfactant production pathway which normally appears only to function in the mammalian foetus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to examine the variation in body surface temperature of grey seal (Halichoerus grypus) pups throughout lactation in response to different environmental conditions. Radiative surface temperatures (T r, °C) of pups were measured on the Isle of May (56°11′N, 02°33′W), southeast Scotland from 29 October to 25 November 2003. Records were obtained from a total of 60 pups (32 female and 28 male) from three different pupping sites during early and late lactation. Pups were sheltered from high wind speeds but air temperature, humidity and solar radiation at pupping sites were similar to general meteorological conditions. The mean T r of all pups was 15.8°C (range 7.7–29.7°C) at an average air temperature of 10.2°C (range 6.5–13.8°C). There was no difference in the mean T r of pups between early and late lactation. However, the T r varied between different regions of the body with hind flippers on average 2–6°C warmer than all other areas measured. There was no difference in mean T r of male and female pups and pup body mass did not account for the variation in T r during early or late lactation. Throughout the day there was an increase in the T r of pups and this explained 20–28% of the variation in T r depending on stage of lactation. There was no difference in the mean T r of pups between pupping sites or associated with different substrate types. Wind speed and substrate temperature had no effect on the T r of pups. However, solar radiation, air temperature and relative humidity accounted for 48% of the variation in mean T r of pups during early lactation. During late lactation air temperature and solar radiation alone accounted for 43% of the variation in T r. These results indicate that environmental conditions explain only some of the variation in T r of grey seal pups in natural conditions. Differences in T r however indicate that the cost of thermoregulation for pups will vary throughout lactation. Further studies examining intrinsic factors such as blubber thickness and activity levels are necessary before developing reliable biophysical models for grey seals.