4 resultados para BIOLOGISTS

em Abertay Research Collections - Abertay University’s repository


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seals must manage their energy reserves carefully while they fast on land to ensure that they go to sea with sufficient fuel to sustain them until they find food. Glucocorticoids (GCs) have been implicated in the control of fuel metabolism and termination of fasting in pinnipeds. Here we tested the hypothesis that dexamethasone, an artificial GC, increases fat and protein catabolism, and induces departure from the breeding colony in wild, fasting grey seal pups. A single intramuscular dose of dexamethasone completely suppressed cortisol production for 24–72 h, demonstrating activation of GC receptors. In experiment 1, we compared the effects of a single dose of dexamethasone or saline administered 10 days after weaning on fasting mass and body composition changes, cortisol, blood urea nitrogen (BUN) and glucose levels, and timing of departure from the colony. In experiment 2, we investigated the effects of dexamethasone on short-term (5 days) changes in mass loss, body composition and BUN levels. In experiment 1, dexamethasone induced a short-lived increase in mass loss, but there was no difference in timing of departure between dexamethasone- and saline-treated pups (N=10). In experiment 2, dexamethasone increased protein and water loss and prevented a decrease in BUN levels (N=11). Our data suggest changes in cortisol contribute to regulation of protein catabolism in fasting seal pups, irrespective of the sex of the animal, but do not terminate fasting. By affecting the rate of protein depletion, lasting changes in cortisol levels could influence the amount of time seal pups have to find food, and thus may have important consequences for their survival.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study used supplementary feeding to test the hypothesis that fuel partitioning during the postweaning fast in grey seal pups is affected by size and composition of energy reserves at weaning, and by extra provisioning. Mass and body composition changes were measured during suckling and fasting to investigate the effect of natural differences in energy reserves at weaning on subsequent allocation of fat and protein to energy use. We fed seven pups for 5 days after weaning, to investigate the effect of increased fuel availability, and particularly protein, on fuel utilisation. After correcting for protein used during the moult, the proportional contribution of fat was 86–99% of total energy use. Pups with greater energy reserves, i.e. those that were heavier and fatter at weaning, had higher rates of fat and energy use. There was no significant relationship between adiposity at weaning and proportional contribution of fat to energy use, perhaps due to a limited sample size or range of body masses and adiposity. Supplemented individuals used energy, specifically fat, much faster and utilised proportionally less of their endogenous protein by departure than non-supplemented individuals. Fat metabolism contributed a similar percentage to daily energy use in both groups. These findings show that pups spare protein, even when energy use is dramatically increased. Pups that receive greater maternal provisioning and lay down more protein may have increased survival chances at sea. This study highlights the importance of protein reserves in first year survival of grey seal pups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study seeks to understand how the physiological constraints of diving may change on a daily and seasonal basis. Dive data were obtained from southern elephant seals (Mirounga leonina) from South Georgia using satellite relay data loggers. We analysed the longest (95th percentile) dive durations as proxies for physiological dive limits. A strong, significant relationship existed between the duration of these dives and the time of day and week of year in which they were performed. The depth of the deepest dives also showed a significant, but far less consistent, relationship with local time of day and season. Changes in the duration of the longest dives occurred irrespective of their depth. Dives were longest in the morning (04:00-12:00 h) and shortest in the evening (16:00-00:00 h). The size of the fluctuation varied among animals from 4.0 to 20.0 min. The daily pattern in dive depth was phase-shifted in relation to the diurnal rhythm in dive duration. Dives were deeper at midday and shallower around midnight. Greater daily changes in duration occurred in seals feeding in the open ocean than in those foraging on the continental shelf. The seasonal peak in the duration of the longest dives coincided with austral midwinter. The size of the increase in dive duration from autumn/spring to winter ranged from 11.5 to 30.0 min. Changes in depth of the longest dives were not consistently associated with particular times of year. The substantial diurnal and seasonal fluctuations in maximum dive duration may be a result of changes in the physiological capacity to remain submerged, in addition to temporal changes in the ecological constraints on dive behaviour. We speculate about the role of melatonin as a hormonal mediator of diving capability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Targeted cancer therapy aims to disrupt aberrant cellular signalling pathways. Biomarkers are surrogates of pathway state, but there is limited success in translating candidate biomarkers to clinical practice due to the intrinsic complexity of pathway networks. Systems biology approaches afford better understanding of complex, dynamical interactions in signalling pathways targeted by anticancer drugs. However, adoption of dynamical modelling by clinicians and biologists is impeded by model inaccessibility. Drawing on computer games technology, we present a novel visualisation toolkit, SiViT, that converts systems biology models of cancer cell signalling into interactive simulations that can be used without specialist computational expertise. SiViT allows clinicians and biologists to directly introduce for example loss of function mutations and specific inhibitors. SiViT animates the effects of these introductions on pathway dynamics, suggesting further experiments and assessing candidate biomarker effectiveness. In a systems biology model of Her2 signalling we experimentally validated predictions using SiViT, revealing the dynamics of biomarkers of drug resistance and highlighting the role of pathway crosstalk. No model is ever complete: the iteration of real data and simulation facilitates continued evolution of more accurate, useful models. SiViT will make accessible libraries of models to support preclinical research, combinatorial strategy design and biomarker discovery.