3 resultados para physical fitness
em ABACUS. Repositorio de Producción Científica - Universidad Europea
Resumo:
The aim of the present investigation was to evaluate the influence of the physical fitness of a cardiopulmonary resuscitation (CPR) provider on the performance of and physiologic response to CPR. To this end, comparisons were made of sedentary and physically active subjects in terms of CPR performance and physiologic variables. Two study groups were established: group P (n = 14), composed of sedentary, professional CPR rescuers (mean [± SD]; age, 34 ± 6 years; V̇O2max, 32.5 ± 5.5 mL/kg/min), and group Ex (n = 14), composed of physically active, nonexperienced subjects (age, 34 ± 6 years; V̇O2max, 44.5 ± 8.5 mL/kg/min). Each subject was required to perform an 18-min CPR session, which involved manual external cardiac compressions (ECCs) on an electronic teaching mannequin following accepted standard CPR guidelines. Subjects' gas exchange parameters and heart rates (HRs) were monitored throughout the trial. Variables indicating the adequacy of the ECCs (ECC depth and the percentage of incorrect compressions and hand placements) also were determined. Overall CPR performance was similar in both groups. The indicators of ECC adequacy fell within accepted limits (ie, an ECC depth between 38 and 51 mm). However, fatigue prevented four subjects from group P from completing the trial. In contrast, the physiologic responses to CPR differed between groups. The indicators of the intensity of effort during the trial, such as HR or percentage of maximum oxygen uptake (V̇O2max) were higher in group P subjects than group Ex subjects, respectively (HRs at the end of the trial, 139 ± 22 vs 115 ± 17 beats/min, p < 0.01; percentage of V̇O2max after 12 min of CPR, 46.7 ± 9.7% vs 37.2 ± 10.4%, p < 0,05). These results suggest that a certain level of physical fitness may be beneficial to CPR providers to ensure the adequacy of chest compressions performed during relatively long periods of cardiac arrest.
Resumo:
We investigated the effect of different exercise modalities on high sensitivity-C reactive protein (hs-CRP) and other inflammatory markers in patients with type 2 diabetes and the metabolic syndrome. Eighty-two patients were randomized into 4 groups: sedentary control (A); receiving counseling to perform low-intensity physical activity (B); performing prescribed and supervised high-intensity aerobic (C) or aerobic + resistance (D) exercise (with the same caloric expenditure) for 12 months. Evaluation of leisure-time physical activity and assessment of physical fitness, cardiovascular risk factors and inflammatory biomarkers was performed at baseline and every 3 months. Volume of physical activity increased and HbA1c decreased in Groups B–D. VO2max, HOMA-IR index, HDL-cholesterol, waist circumference and albuminuria improved in Groups C and D, whereas strength and flexibility improved only in Group D. Levels of hs-CRP decreased in all three exercising groups, but the reduction was significant only in Groups C and D, and particularly in Group D. Changes in VO2max and the exercise modalities were strong predictors of hs-CRP reduction, independent of body weight. Leptin, resistin and interleukin-6 decreased, whereas adiponectin increased in Groups C and D. Interleukin-1β, tumor necrosis factor-α and interferon-γ decreased, whereas anti-inflammatory interleukin-4 and 10 increased only in Group D. In conclusion, physical exercise in type 2 diabetic patients with the metabolic syndrome is associated with a significant reduction of hs-CRP and other inflammatory and insulin resistance biomarkers, independent of weight loss. Long-term high-intensity (preferably mixed) training, in addition to daytime physical activity, is required to obtain a significant anti-inflammatory effect.
Resumo:
The so-called toxic triad of factors linked to cancer, namely obesity, poor cardiorespiratory fitness and physical inactivity, increase the risk of cancer and, when cancer is present, worsen its prognosis. Thus, obesity and a sedentary lifestyle have been linked to an elevated cancer risk whereas regular physical exercise and good cardiorespiratory function (CRF) diminish this risk. Despite genetic risk factors, there is evidence to show that some lifestyle modifications are capable of reducing the incidence of cancer and its associated morbidity and mortality. Regular physical exercise targeted at maintaining body weight within healthy limits and improving CRF will reduce a person's cancer risk and, once diagnosed, will also improve its prognosis, reducing mortality and the risk of disease recurrence through similar effects. In this review, we describe how physical activity can be used as a pleiotropic, coadjuvant tool to minimize the toxic triad for cancer and update the mechanisms proposed to date for the effects observed.