2 resultados para oxidation of methionine, oxidative stress

em ABACUS. Repositorio de Producción Científica - Universidad Europea


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanisms contributing to pulmonary and systemic injury induced by high tidal volume (VT) mechanical ventilation are not well known. We tested the hypothesis that increased peroxynitrite formation is involved in organ injury and dysfunction induced by mechanical ventilation. Male Sprague-Dawley rats were subject to low- (VT, 9 mL/kg; positive end-expiratory pressure, 5 cmH2O) or high- (VT, 25 mL/kg; positive end-expiratory pressure, 0 cmH2O) VT mechanical ventilation for 120 min, and received 1 of 3 treatments: 3-aminobenzamide (3-AB, 10 mg/kg, intravenous, a poly adenosine diphosphate ribose polymerase [PARP] inhibitor), or the metalloporphyrin manganese(III) tetrakis(1-methyl-4-pyridyl)porphyrin (MnTMPyP, 5 mg/kg intravenous, a peroxynitrite scavenger), or no treatment (control group), 30 min before starting the mechanical ventilation protocol (n = 8 per group, 6 treatment groups). We measured mean arterial pressure, peak inspiratory airway pressure, blood chemistry, and gas exchange. Oxidation (fluorescence for oxidized dihydroethidium), protein nitration (immunofluorescence and Western blot for 3-nitrotyrosine), PARP protein (Western blot) and gene expression of the nitric oxide (NO) synthase (NOS) isoforms (quantitative real-time reverse transcription polymerase chain reaction) were measured in lung and vascular tissue. Lung injury was quantified by light microscopy. High-VT mechanical ventilation was associated with hypotension, increased peak inspiratory airway pressure, worsened oxygenation; oxidation and protein nitration in lung and aortic tissue; increased PARP protein in lung; up-regulation of NOS isoforms in lung tissue; signs of diffuse alveolar damage at histological examination. Treatment with 3AB or MnTMPyP attenuated the high-VT mechanical ventilation-induced changes in pulmonary and cardiovascular function; down-regulated the expression of NOS1, NOS2, and NOS3; decreased oxidation and nitration in lung and aortic tissue; and attenuated histological changes. Increased peroxynitrite formation is involved in mechanical ventilation-induced pulmonary and vascular dysfunction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rapamycin consistently increases longevity in mice although the mechanism of action of this drug is unknown. In the present investigation we studied the effect of rapamycin on mitochondrial oxidative stress at the same dose that is known to increase longevity in mice (14 mg of rapamycin/kg of diet). Middle aged mice (16 months old) showed significant age-related increases in mitochondrial ROS production at complex I, accumulation of mtDNA fragments inside nuclear DNA, mitochondrial protein lipoxidation, and lipofuscin accumulation compared to young animals (4 months old) in the liver. After 7 weeks of dietary treatment all those increases were totally or partially (lipofuscin) abolished by rapamycin, middle aged rapamycin-treated animals showing similar levels in those parameters to young animals. The decrease in mitochondrial ROS production was due to qualitative instead of quantitative changes in complex I. The decrease in mitochondrial protein lipoxidation was not due to decreases in the amount of highly oxidizable unsaturated fatty acids. Rapamycin also decreased the amount of RAPTOR (of mTOR complex) and increased the amounts of the PGC1-α and ATG13 proteins. The results are consistent with the possibility that rapamycin increases longevity in mice at least in part by lowering mitochondrial ROS production and increasing autophagy, decreasing the derived final forms of damage accumulated with age which are responsible for increased longevity. The decrease in lipofuscin accumulation induced by rapamycin adds to previous information suggesting that the increase in longevity induced by this drug can be due to a decrease in the rate of aging. © 2016 Elsevier Inc.