1 resultado para optimal power flow successive linear programming
em ABACUS. Repositorio de Producción Científica - Universidad Europea
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Academic Research Repository at Institute of Developing Economies (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (16)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (5)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Aston University Research Archive (46)
- Biblioteca de Teses e Dissertações da USP (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (12)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (39)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (8)
- Bulgarian Digital Mathematics Library at IMI-BAS (7)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (47)
- Central European University - Research Support Scheme (1)
- Cochin University of Science & Technology (CUSAT), India (3)
- Coffee Science - Universidade Federal de Lavras (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (7)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (35)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (8)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (4)
- Department of Computer Science E-Repository - King's College London, Strand, London (3)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (7)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (8)
- Digital Peer Publishing (4)
- DigitalCommons@The Texas Medical Center (1)
- DigitalCommons@University of Nebraska - Lincoln (6)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (22)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Instituto Politécnico de Viseu (4)
- Instituto Politécnico do Porto, Portugal (77)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Martin Luther Universitat Halle Wittenberg, Germany (3)
- Massachusetts Institute of Technology (3)
- Memorial University Research Repository (2)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- Publishing Network for Geoscientific & Environmental Data (2)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (5)
- RDBU - Repositório Digital da Biblioteca da Unisinos (3)
- Repositorio Academico Digital UANL (2)
- Repositório Científico da Universidade de Évora - Portugal (9)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (33)
- Repositório da Escola Nacional de Administração Pública (ENAP) (1)
- Repositório da Produção Científica e Intelectual da Unicamp (1)
- Repositorio de la Universidad de Cuenca (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (2)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (2)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (316)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- Scielo Saúde Pública - SP (6)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (2)
- Universidad de Alicante (12)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (26)
- Universidade do Minho (4)
- Universidade dos Açores - Portugal (4)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (5)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (5)
- Université de Montréal (1)
- Université de Montréal, Canada (13)
- Université Laval Mémoires et thèses électroniques (1)
- University of Michigan (22)
- University of Queensland eSpace - Australia (20)
- University of Southampton, United Kingdom (16)
- University of Washington (1)
Resumo:
In this paper, a real-time optimal control technique for non-linear plants is proposed. The control system makes use of the cell-mapping (CM) techniques, widely used for the global analysis of highly non-linear systems. The CM framework is employed for designing approximate optimal controllers via a control variable discretization. Furthermore, CM-based designs can be improved by the use of supervised feedforward artificial neural networks (ANNs), which have proved to be universal and efficient tools for function approximation, providing also very fast responses. The quantitative nature of the approximate CM solutions fits very well with ANNs characteristics. Here, we propose several control architectures which combine, in a different manner, supervised neural networks and CM control algorithms. On the one hand, different CM control laws computed for various target objectives can be employed for training a neural network, explicitly including the target information in the input vectors. This way, tracking problems, in addition to regulation ones, can be addressed in a fast and unified manner, obtaining smooth, averaged and global feedback control laws. On the other hand, adjoining CM and ANNs are also combined into a hybrid architecture to address problems where accuracy and real-time response are critical. Finally, some optimal control problems are solved with the proposed CM, neural and hybrid techniques, illustrating their good performance.