1 resultado para non-sensory characteristics
em ABACUS. Repositorio de Producción Científica - Universidad Europea
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberdeen University (1)
- Abertay Research Collections - Abertay University’s repository (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (13)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (5)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (2)
- Aston University Research Archive (38)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca de Teses e Dissertações da USP (5)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (17)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (107)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (14)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (34)
- Brock University, Canada (6)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (37)
- Central European University - Research Support Scheme (1)
- Cochin University of Science & Technology (CUSAT), India (14)
- Coffee Science - Universidade Federal de Lavras (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (11)
- CORA - Cork Open Research Archive - University College Cork - Ireland (5)
- Dalarna University College Electronic Archive (2)
- Digital Commons - Michigan Tech (3)
- Digital Commons at Florida International University (10)
- DigitalCommons@The Texas Medical Center (14)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (12)
- DRUM (Digital Repository at the University of Maryland) (4)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Glasgow Theses Service (2)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (3)
- Instituto Politécnico de Santarém (1)
- Instituto Politécnico de Viseu (2)
- Instituto Politécnico do Porto, Portugal (4)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (5)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- National Center for Biotechnology Information - NCBI (6)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- Publishing Network for Geoscientific & Environmental Data (14)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (3)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (3)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (4)
- Repositório Científico do Instituto Politécnico de Santarém - Portugal (1)
- Repositório da Produção Científica e Intelectual da Unicamp (55)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (2)
- Repositorio de la Universidad de Cuenca (2)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (5)
- Repositorio Institucional de la Universidad de La Laguna (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (146)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (5)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Scielo España (1)
- Scielo Saúde Pública - SP (91)
- Universidad de Alicante (5)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (15)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade do Minho (6)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (2)
- Universidade Federal do Pará (4)
- Universidade Federal do Rio Grande do Norte (UFRN) (6)
- Universidade Técnica de Lisboa (2)
- Universita di Parma (2)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (68)
- Université de Montréal (4)
- Université de Montréal, Canada (26)
- University of Queensland eSpace - Australia (37)
- University of Washington (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
In this paper, a real-time optimal control technique for non-linear plants is proposed. The control system makes use of the cell-mapping (CM) techniques, widely used for the global analysis of highly non-linear systems. The CM framework is employed for designing approximate optimal controllers via a control variable discretization. Furthermore, CM-based designs can be improved by the use of supervised feedforward artificial neural networks (ANNs), which have proved to be universal and efficient tools for function approximation, providing also very fast responses. The quantitative nature of the approximate CM solutions fits very well with ANNs characteristics. Here, we propose several control architectures which combine, in a different manner, supervised neural networks and CM control algorithms. On the one hand, different CM control laws computed for various target objectives can be employed for training a neural network, explicitly including the target information in the input vectors. This way, tracking problems, in addition to regulation ones, can be addressed in a fast and unified manner, obtaining smooth, averaged and global feedback control laws. On the other hand, adjoining CM and ANNs are also combined into a hybrid architecture to address problems where accuracy and real-time response are critical. Finally, some optimal control problems are solved with the proposed CM, neural and hybrid techniques, illustrating their good performance.