4 resultados para metoprolol
em ABACUS. Repositorio de Producción Científica - Universidad Europea
Resumo:
The goal of this trial was to study the long-term effects of intravenous (IV) metoprolol administration before reperfusion on left ventricular (LV) function and clinical events. Early IV metoprolol during ST-segment elevation myocardial infarction (STEMI) has been shown to reduce infarct size when used in conjunction with primary percutaneous coronary intervention (pPCI). The METOCARD-CNIC (Effect of Metoprolol in Cardioprotection During an Acute Myocardial Infarction) trial recruited 270 patients with Killip class ≤II anterior STEMI presenting early after symptom onset (<6 h) and randomized them to pre-reperfusion IV metoprolol or control group. Long-term magnetic resonance imaging (MRI) was performed on 202 patients (101 per group) 6 months after STEMI. Patients had a minimal 12-month clinical follow-up. Left ventricular ejection fraction (LVEF) at the 6 months MRI was higher after IV metoprolol (48.7 ± 9.9% vs. 45.0 ± 11.7% in control subjects; adjusted treatment effect 3.49%; 95% confidence interval [CI]: 0.44% to 6.55%; p = 0.025). The occurrence of severely depressed LVEF (≤35%) at 6 months was significantly lower in patients treated with IV metoprolol (11% vs. 27%, p = 0.006). The proportion of patients fulfilling Class I indications for an implantable cardioverter-defibrillator (ICD) was significantly lower in the IV metoprolol group (7% vs. 20%, p = 0.012). At a median follow-up of 2 years, occurrence of the pre-specified composite of death, heart failure admission, reinfarction, and malignant arrhythmias was 10.8% in the IV metoprolol group versus 18.3% in the control group, adjusted hazard ratio (HR): 0.55; 95% CI: 0.26 to 1.04; p = 0.065. Heart failure admission was significantly lower in the IV metoprolol group (HR: 0.32; 95% CI: 0.015 to 0.95; p = 0.046). In patients with anterior Killip class ≤II STEMI undergoing pPCI, early IV metoprolol before reperfusion resulted in higher long-term LVEF, reduced incidence of severe LV systolic dysfunction and ICD indications, and fewer heart failure admissions.
Resumo:
Pre-reperfusion administration of intravenous (IV) metoprolol reduces infarct size in ST-segment elevation myocardial infarction (STEMI). This study sought to determine how this cardioprotective effect is influenced by the timing of metoprolol therapy having either a long or short metoprolol bolus-to-reperfusion interval. We performed a post hoc analysis of the METOCARD-CNIC (effect of METOprolol of CARDioproteCtioN during an acute myocardial InfarCtion) trial, which randomized anterior STEMI patients to IV metoprolol or control before mechanical reperfusion. Treated patients were divided into short- and long-interval groups, split by the median time from 15 mg metoprolol bolus to reperfusion. We also performed a controlled validation study in 51 pigs subjected to 45 min ischemia/reperfusion. Pigs were allocated to IV metoprolol with a long (−25 min) or short (−5 min) pre-perfusion interval, IV metoprolol post-reperfusion (+60 min), or IV vehicle. Cardiac magnetic resonance (CMR) was performed in the acute and chronic phases in both clinical and experimental settings. For 218 patients (105 receiving IV metoprolol), the median time from 15 mg metoprolol bolus to reperfusion was 53 min. Compared with patients in the short-interval group, those with longer metoprolol exposure had smaller infarcts (22.9 g vs. 28.1 g; p = 0.06) and higher left ventricular ejection fraction (LVEF) (48.3% vs. 43.9%; p = 0.019) on day 5 CMR. These differences occurred despite total ischemic time being significantly longer in the long-interval group (214 min vs. 160 min; p < 0.001). There was no between-group difference in the time from symptom onset to metoprolol bolus. In the animal study, the long-interval group (IV metoprolol 25 min before reperfusion) had the smallest infarcts (day 7 CMR) and highest long-term LVEF (day 45 CMR). In anterior STEMI patients undergoing primary angioplasty, the sooner IV metoprolol is administered in the course of infarction, the smaller the infarct and the higher the LVEF. These hypothesis-generating clinical data are supported by a dedicated experimental large animal study.
Resumo:
We seek to examine the efficacy and safety of prereperfusion emergency medical services (EMS)–administered intravenous metoprolol in anterior ST-segment elevation myocardial infarction patients undergoing eventual primary angioplasty. This is a prespecified subgroup analysis of the Effect of Metoprolol in Cardioprotection During an Acute Myocardial Infarction trial population, who all eventually received oral metoprolol within 12 to 24 hours. We studied patients receiving intravenous metoprolol by EMS and compared them with others treated by EMS but not receiving intravenous metoprolol. Outcomes included infarct size and left ventricular ejection fraction on cardiac magnetic resonance imaging at 1 week, and safety by measuring the incidence of the predefined combined endpoint (composite of death, malignant ventricular arrhythmias, advanced atrioventricular block, cardiogenic shock, or reinfarction) within the first 24 hours. From the total population of the trial (N=270), 147 patients (54%) were recruited during out-of-hospital assistance and transferred to the primary angioplasty center (74 intravenous metoprolol and 73 controls). Infarct size was smaller in patients receiving intravenous metoprolol compared with controls (23.4 [SD 15.0] versus 34.0 [SD 23.7] g; adjusted difference –11.4; 95% confidence interval [CI] –18.6 to –4.3). Left ventricular ejection fraction was higher in the intravenous metoprolol group (48.1% [SD 8.4%] versus 43.1% [SD 10.2%]; adjusted difference 5.0; 95% CI 1.6 to 8.4). Metoprolol administration did not increase the incidence of the prespecified safety combined endpoint: 6.8% versus 17.8% in controls (risk difference –11.1; 95% CI –21.5 to –0.6). Out-of-hospital administration of intravenous metoprolol by EMS within 4.5 hours of symptom onset in our subjects reduced infarct size and improved left ventricular ejection fraction with no excess of adverse events during the first 24 hours.
Resumo:
The impact of intravenous (IV) beta-blockers before primary percutaneous coronary intervention (PPCI) on infarct size and clinical outcomes is not well established. This study sought to conduct the first double-blind, placebo-controlled international multicenter study testing the effect of early IV beta-blockers before PPCI in a general ST-segment elevation myocardial infarction (STEMI) population. STEMI patients presenting <12 h from symptom onset in Killip class I to II without atrioventricular block were randomized 1:1 to IV metoprolol (2 × 5-mg bolus) or matched placebo before PPCI. Primary endpoint was myocardial infarct size as assessed by cardiac magnetic resonance imaging (CMR) at 30 days. Secondary endpoints were enzymatic infarct size and incidence of ventricular arrhythmias. Safety endpoints included symptomatic bradycardia, symptomatic hypotension, and cardiogenic shock. A total of 683 patients (mean age 62 ± 12 years; 75% male) were randomized to metoprolol (n = 336) or placebo (n = 346). CMR was performed in 342 patients (54.8%). Infarct size (percent of left ventricle [LV]) by CMR did not differ between the metoprolol (15.3 ± 11.0%) and placebo groups (14.9 ± 11.5%; p = 0.616). Peak and area under the creatine kinase curve did not differ between both groups. LV ejection fraction by CMR was 51.0 ± 10.9% in the metoprolol group and 51.6 ± 10.8% in the placebo group (p = 0.68). The incidence of malignant arrhythmias was 3.6% in the metoprolol group versus 6.9% in placebo (p = 0.050). The incidence of adverse events was not different between groups. In a nonrestricted STEMI population, early intravenous metoprolol before PPCI was not associated with a reduction in infarct size. Metoprolol reduced the incidence of malignant arrhythmias in the acute phase and was not associated with an increase in adverse events.