2 resultados para management optimization in age-structured models
em ABACUS. Repositorio de Producción Científica - Universidad Europea
Resumo:
The aim of this study was to establish guidelines for the optimization of biologic therapies for health professionals involved in the management of patients with RA, AS and PsA. Recommendations were established via consensus by a panel of experts in rheumatology and hospital pharmacy, based on analysis of available scientific evidence obtained from four systematic reviews and on the clinical experience of panellists. The Delphi method was used to evaluate these recommendations, both between panellists and among a wider group of rheumatologists. Previous concepts concerning better management of RA, AS and PsA were reviewed and, more specifically, guidelines for the optimization of biologic therapies used to treat these diseases were formulated. Recommendations were made with the aim of establishing a plan for when and how to taper biologic treatment in patients with these diseases. The recommendations established herein aim not only to provide advice on how to improve the risk:benefit ratio and efficiency of such treatments, but also to reduce variability in daily clinical practice in the use of biologic therapies for rheumatic diseases
Resumo:
Myocardial fibrosis detected via delayed-enhanced magnetic resonance imaging (MRI) has been shown to be a strong indicator for ventricular tachycardia (VT) inducibility. However, little is known regarding how inducibility is affected by the details of the fibrosis extent, morphology, and border zone configuration. The objective of this article is to systematically study the arrhythmogenic effects of fibrosis geometry and extent, specifically on VT inducibility and maintenance. We present a set of methods for constructing patient-specific computational models of human ventricles using in vivo MRI data for patients suffering from hypertension, hypercholesterolemia, and chronic myocardial infarction. Additional synthesized models with morphologically varied extents of fibrosis and gray zone (GZ) distribution were derived to study the alterations in the arrhythmia induction and reentry patterns. Detailed electrophysiological simulations demonstrated that (1) VT morphology was highly dependent on the extent of fibrosis, which acts as a structural substrate, (2) reentry tended to be anchored to the fibrosis edges and showed transmural conduction of activations through narrow channels formed within fibrosis, and (3) increasing the extent of GZ within fibrosis tended to destabilize the structural reentry sites and aggravate the VT as compared to fibrotic regions of the same size and shape but with lower or no GZ. The approach and findings represent a significant step toward patient-specific cardiac modeling as a reliable tool for VT prediction and management of the patient. Sensitivities to approximation nuances in the modeling of structural pathology by image-based reconstruction techniques are also implicated.