2 resultados para hybrid intelligent systems

em ABACUS. Repositorio de Producción Científica - Universidad Europea


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Semantic relations are an important element in the construction of ontologies and models of problem domains. Nevertheless, they remain fuzzy or under-specified. This is a pervasive problem in software engineering and artificial intelligence. Thus, we find semantic links that can have multiple interpretations in wide-coverage ontologies, semantic data models with abstractions that are not enough to capture the relation richness of problem domains, and improperly structured taxonomies. However, if relations are provided with precise semantics, some of these problems can be avoided, and meaningful operations can be performed on them. In this paper we present some insightful issues about the modeling, representation and usage of relations including the available taxonomy structuring methodologies as well as the initiatives aiming to provide relations with precise semantics. Moreover, we explain and propose the control of relations as a key issue for the coherent construction of ontologies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, a real-time optimal control technique for non-linear plants is proposed. The control system makes use of the cell-mapping (CM) techniques, widely used for the global analysis of highly non-linear systems. The CM framework is employed for designing approximate optimal controllers via a control variable discretization. Furthermore, CM-based designs can be improved by the use of supervised feedforward artificial neural networks (ANNs), which have proved to be universal and efficient tools for function approximation, providing also very fast responses. The quantitative nature of the approximate CM solutions fits very well with ANNs characteristics. Here, we propose several control architectures which combine, in a different manner, supervised neural networks and CM control algorithms. On the one hand, different CM control laws computed for various target objectives can be employed for training a neural network, explicitly including the target information in the input vectors. This way, tracking problems, in addition to regulation ones, can be addressed in a fast and unified manner, obtaining smooth, averaged and global feedback control laws. On the other hand, adjoining CM and ANNs are also combined into a hybrid architecture to address problems where accuracy and real-time response are critical. Finally, some optimal control problems are solved with the proposed CM, neural and hybrid techniques, illustrating their good performance.