4 resultados para blood lactate
em ABACUS. Repositorio de Producción Científica - Universidad Europea
Resumo:
Based on previous research which shows parallelism between the saliva and blood lactate response during incremental exercise, we hypothesized that a "maximum salivary lactate steady state" (saliva-MLSS) might exist. Thus, the aim of the present investigation was to establish 1) which lower limit for the increase in salivary lactate concentration during a constant workload (i.e., from the 10th to the 20th min) test could be used to determine the saliva-MLSS and 2) if the exercise intensity corresponding to the saliva-MLSS is identical to that evoking the (blood) MLSS. Twelve male amateur athletes of mean (+/-SD) age 24+/-5 year were selected for the study. Based on the results of a previous maximal cycle ergometer test for lactate threshold (LT) determination, each subject performed consecutive constant workload tests of 20-min duration on separate days for MLSS determination, Blood and saliva (25 mu l) samples were collected at 0, 10, and 20 min during the tests for lactate determination. A Student's t-test for paired data demonstrated that a salivary lactate increase of 0.8 mM corresponded to the saliva-MLSS. At this value, indeed, no significant differences were observed between the mean (V) over dot O-2, and W values corresponding to the MLSS and the saliva-MLSS. In conclusion, the present findings indicate that 0.8 mM is the lower limit for the increase in saliva lactate concentration during a constant load test and thus is that which might be used as a reference to determine saliva-MLSS. Furthermore, saliva-MLSS might be used as an alternative to MLSS determination in blood samples.
Resumo:
To investigate the validity and reliability of surface electromyography (EMG) as a new non-invasive determinant of the metabolic response to incremental exercise in elite cyclists. The relation between EMG activity and other more conventional methods for analysing the aerobic-anaerobic transition such as blood lactate measurements (lactate threshold (LT) and onset of blood lactate accumulation (OBLA)) and ventilatory parameters (ventilatory thresholds 1 and 2 (VT1 and VT2)) was studied.Twenty eight elite road cyclists (age 24 (4) years; VO2MAX 69.9 (6.4) ml/kg/min; values mean (SD)) were selected as subjects. Each of them performed a ramp protocol (starting at 0 W, with increases of 5 W every 12 seconds) on a cycle ergometer (validity study). In addition, 15 of them performed the same test twice (reliability study). During the tests, data on gas exchange and blood lactate levels were collected to determine VT1, VT2, LT, and OBLA. The root mean squares of EMG signals (rms-EMG) were recorded from both the vastus lateralis and the rectus femoris at each intensity using surface electrodes. Results - A two threshold response was detected in the rms-EMG recordings from both muscles in 90% of subjects, with two breakpoints, EMG(T1) and EMG(T2), at around 60-70% and 80-90% of VO2MAX respectively. The results of the reliability study showed no significant differences (p > 0.05) between mean values of EMG(T1) and EMG(T2) obtained in both tests. Furthermore, no significant differences (p > 0.05) existed between mean values of EMG(T1), in the vastus lateralis and rectus femoris, and VT1 and LT (62.8 (14.5) and 69.0 (6.2) and 64.6 (6.4) and 68.7 (8.2)% of VO2MAX respectively), or between mean values of EMG(T2), in the vastus lateralis and rectus femoris, and VT2 and OBLA (86.9 (9.0) and 88.0 (6.2) and 84.6 (6.5) and 87.7 (6.4)% of VO2MAX respectively). Rms-EMG may be a useful complementary non-invasive method for analysing the aerobic-anaerobic transition (ventilatory and lactate thresholds) in elite cyclists.
Resumo:
In this reported clinical case, a healthy and well-trained male subject [aged 37 years, maximal oxygen uptake (V[Combining Dot Above]O2max) 64 mL·kg·min] ran for 23 hours and 35 minutes covering 160 km (6.7 km/h average running speed). The analysis of hematological and biochemical parameters 3 days before the event, just after termination of exercise, and after 24 and 48 hours of recovery revealed important changes on muscle and liver function, and hemolysis. The analysis of urine sediments showed an increment of red and white blood cells filtrations, compatible with transient nephritis. After 48 hours, most of these alterations were recovered. Physicians and health professionals who monitor such athletic events should be aware that these athletes could exhibit transient symptoms compatible with severe pathologies and diseases, although the genesis of these blood and urinary abnormalities are attributable to transient physiological adaptations rather to pathological status.
Resumo:
Exercise improves functional capacity in spinal cord injury (SCI). However, exhaustive exercise, especially when sporadic, is linked to the production of reactive oxygen species that may have a detrimental effect on SCI. We aimed to study the effect of a single bout of exhaustive exercise on systemic oxidative stress parameters and on the expression of antioxidant enzymes in individuals with paraplegia. The study was conducted in the Physical Therapy department and the Physical Education and Sports department of the University of Valencia. Sixteen paraplegic subjects were submitted to a graded exercise test (GET) until volitional exhaustion. They were divided into active or non-active groups. Blood samples were drawn immediately, 1 and 2 h after the GET. We determined plasma malondialdehyde (MDA) and protein carbonylation as markers of oxidative damage. Antioxidant gene expression (catalase and glutathione peroxidase-GPx) was determined in peripheral blood mononuclear cells. We found a significant increase in plasma MDA and protein carbonyls immediately after the GET (P<0.05). This increment correlated significantly with the lactate levels. Active paraplegics showed lower levels of exercise-induced oxidative damage (P<0.05) and higher exercise-induced catalase (P<0.01) and GPx (P<0.05) gene expression after the GET. These results suggest that exercise training may be useful in SCI patients to develop systemic antioxidant defenses that may protect them against exercise-induced oxidative damage.