3 resultados para app stores

em ABACUS. Repositorio de Producción Científica - Universidad Europea


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis inédita presentada en la Universidad Europea de Madrid. Facultad de Artes y Comunicación. Programa de Doctorado en Comunicación

Relevância:

10.00% 10.00%

Publicador:

Resumo:

McArdle disease is arguably the paradigm of exercise intolerance in humans. This disorder is caused by inherited deficiency of myophosphorylase, the enzyme isoform that initiates glycogen breakdown in skeletal muscles. Because patients are unable to obtain energy from their muscle glycogen stores, this disease provides an interesting model of study for exercise physiologists, allowing insight to be gained into the understanding of glycogen-dependent muscle functions. Of special interest in the field of muscle physiology and sports medicine are also some specific (if not unique) characteristics of this disorder, such as the so-called 'second wind' phenomenon, the frequent exercise-induced rhabdomyolysis and myoglobinuria episodes suffered by patients (with muscle damage also occurring under basal conditions), or the early appearance of fatigue and contractures, among others. In this article we review the main pathophysiological features of this disorder leading to exercise intolerance as well as the currently available therapeutic possibilities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The intent of this review is to summarize current body of knowledge on the potential implication of the xanthine oxidase pathway (XO) on skeletal muscle damage. The possible involvement of the XO pathway in muscle damage is exemplified by the role of XO inhibitors (e.g., allopurinol) in attenuating muscle damage. Reliance on this pathway (as well as on the purine nucleotide cycle) could be exacerbated in conditions of low muscle glycogen availability. Thus, we also summarize current hypotheses on the etiology of both baseline and exertional muscle damage in McArdle disease, a condition caused by inherited deficiency of myophosphorylase. Because myophosphorylase catalyzes the first step of muscle glycogen breakdown, patients are unable to obtain energy from their muscle glycogen stores. Finally, we provide preliminary data from our laboratory on the potential implication of the XO pathway in the muscle damage that is commonly experienced by these patients.