8 resultados para Programa de Ejercicio Físico
em ABACUS. Repositorio de Producción Científica - Universidad Europea
Resumo:
SIN FINANCIACIÓN
Resumo:
2.241 JCR (2015) Q3, 140/213 Oncology, 45/80 Nutrition & dietetics
Resumo:
McArdle disease, caused by inherited deficiency of the enzyme muscle glycogen phosphorylase (GP-MM), is arguably the paradigm of exercise intolerance. The recent knock-in (p.R50X/p.R50X) mouse disease model allows an investigation of the phenotypic consequences of muscle glycogen unavailability and the physiopathology of exercise intolerance. We analysed, in 2-month-old mice [wild-type (wt/wt), heterozygous (p.R50X/wt) and p.R50X/p.R50X)], maximal endurance exercise capacity and the molecular consequences of an absence of GP-MM in the main glycogen metabolism regulatory enzymes: glycogen synthase, glycogen branching enzyme and glycogen debranching enzyme, as well as glycogen content in slow-twitch (soleus), intermediate (gastrocnemius) and glycolytic/fast-twitch (extensor digitorum longus; EDL) muscles.
Resumo:
McArdle disease is arguably the paradigm of exercise intolerance in humans. This disorder is caused by inherited deficiency of myophosphorylase, the enzyme isoform that initiates glycogen breakdown in skeletal muscles. Because patients are unable to obtain energy from their muscle glycogen stores, this disease provides an interesting model of study for exercise physiologists, allowing insight to be gained into the understanding of glycogen-dependent muscle functions. Of special interest in the field of muscle physiology and sports medicine are also some specific (if not unique) characteristics of this disorder, such as the so-called 'second wind' phenomenon, the frequent exercise-induced rhabdomyolysis and myoglobinuria episodes suffered by patients (with muscle damage also occurring under basal conditions), or the early appearance of fatigue and contractures, among others. In this article we review the main pathophysiological features of this disorder leading to exercise intolerance as well as the currently available therapeutic possibilities.
Resumo:
Exercise may be described as a polypill to prevent and/or treat almost every chronic disease, with obvious benefits such as its low cost and practical lack of adverse effects. Implementing physical activity interventions in public health is therefore a goal at the medical, social, and economic levels. This chapter describes the importance of health promotion through physical activity and discusses the impacts of exercise on the most prevalent chronic diseases, namely metabolic syndrome-related disorders, cardiovascular diseases, cancer, and Alzheimer's disease. For each of these chronic conditions, we discuss the epidemiological evidence supporting a beneficial role of exercise, provide guidelines for exercise prescription, and describe the biological mechanisms whereby exercise exerts its modulatory effects.
Resumo:
It is well-recognized that exercise improves mental health, e.g., by decreasing depressive behaviors, improving hippocampal-dependent learning and neurogenesis, and increasing dendritic plasticity. Yet how exercise influences the brain at the molecular level is not clearly understood. Yau et al recently reported that the antidepressant effects of physical exercise are mainly mediated by adiponectin, an adipocyte-secreted hormone ('adipocytokine') with neuroprotective effects at the central nervous system level (Yau et al., 2014). This article is protected by copyright. All rights reserved
Resumo:
Mitochondrial diseases (MD) are the most frequent inborn errors of metabolism. In affected tissues, MD can alter cellular oxygen consumption rate leading to potential decreases in whole-body resting energy expenditure (REE), but data on pediatric children are absent. We determined, using indirect calorimetry (IC), whole-body oxygen consumption (VO2), carbon dioxide production (VCO2), respiratory quotient (RQ) and REE in pediatric patients with MD and healthy controls. Another goal was to assess the accuracy of available predictive equations for REE estimation in this patient population. IC data were obtained under fasting and resting conditions in 20 MD patients and 27 age and gender-matched healthy peers. We determined the agreement between REE measured with IC and REE estimated with Schofield weight and FAO/WHO/UNU equations. Mean values of VO2, VCO2 (mL·min-1·kg-1) or RQ did not differ significantly between patients and controls (P = 0.085, P = 0.055 and P = 0.626 respectively). Accordingly, no significant differences (P = 0.086) were found for REE (kcal·day-1 kg-1) either. On the other hand, although we found no significant differences between IC-measured REE and Schofield or FAO/WHO/UNU-estimated REE, Bland-Altman analysis revealed wide limits of agreement and there were some important individual differences between IC and equation-derived REE. VO2, VCO2, RQ and REE are not significantly altered in pediatric patients with MD compared with healthy controls. The energy demands of pediatric patients with MD should be determined based on IC data in order to provide the best possible personalized nutritional management for these children.
Resumo:
The so-called toxic triad of factors linked to cancer, namely obesity, poor cardiorespiratory fitness and physical inactivity, increase the risk of cancer and, when cancer is present, worsen its prognosis. Thus, obesity and a sedentary lifestyle have been linked to an elevated cancer risk whereas regular physical exercise and good cardiorespiratory function (CRF) diminish this risk. Despite genetic risk factors, there is evidence to show that some lifestyle modifications are capable of reducing the incidence of cancer and its associated morbidity and mortality. Regular physical exercise targeted at maintaining body weight within healthy limits and improving CRF will reduce a person's cancer risk and, once diagnosed, will also improve its prognosis, reducing mortality and the risk of disease recurrence through similar effects. In this review, we describe how physical activity can be used as a pleiotropic, coadjuvant tool to minimize the toxic triad for cancer and update the mechanisms proposed to date for the effects observed.